TOP
1/1
庫存:1
航天器姿態動力學中的混沌(簡體書)
人民幣定價:98元
定  價:NT$588元
優惠價: 5294
可得紅利積點:8 點

庫存:1

商品簡介

名人/編輯推薦

目次

書摘/試閱

航天器混沌姿態運動的識別和控制問題在航天科學中具有重要實際意義。《航天器姿態動力學中的混沌》致力於總結該領域的近期發展,提供研究航天器姿態運動的新方法和觀點,也為該領域進一步的深入分析研究提供有明確工程背景的新的數學模型。讀者可從《航天器姿態動力學中的混沌》獲得混沌和混沌控制理論及其在航天器姿態運動中應用的知識,包括基本概念,主要方法以及最新進展。.
讀者可從《航天器姿態動力學中的混沌》獲得混沌和混沌控制理論及其在航天器姿態運動中應用的知識,包括基本概念,主要方法以及最新進展。
Chapter 1 Primer on Spacecraft Dynamics
1.1 Orbital Motionof Spacecraft
1.1.1 Gravitational Field of a Particle,
1.1.2 Gravitational Field of a Rigid Body
1.1.3 Dynamical Equations of Two-body System
1.1.4 Firstlntegrals
1.1.5 Characteristics ofKeplerian Orbit
1.1.6 Elliptic Orbit
1.2 Environmental Torques Acting on Spacecraft
1.2.1 Gravitational Torque
1.2.2 Magnetic Torque
1.3 Attitude Motion of Spacecraft in the Gravitational Field
1.3.1 Euler's Equations and Poisson's Equations
1.3.2 Planar Libration
1.3.3 Stability of Relative Equilibrium
1.3.4 Attitude Motion of a Gyrostat
1.4 Attitude Motion of Torque-free Spacecraft
1.4.1 Torque-free Rigid Body,
1.4.2 Torque free Gyrostat
1.4.3 Influence of Energy Dissipation on Spinning Spacecraft
References

Chapter 2 A Survey of Chaos Theory
2.1 The Overview of Chaos
2.1.1 DescriptionsofChaos
2.1.2 Geometrical Structures of Chaos
2.1.3 Routes to Chaos
2.2 Numeri calIdentification of Chaos
2.2.1 Introduction
2.2.2 Lyapunov Exponents
2.2.3 Power Spectra
2.3 Melnikov Theory
2.3.1 Introduction
2.3.2 Transversal Homoclinic/Heteroclinic Point
2.3.3 Analytical Prediction
2.3.4 Interruptions
2.4 Chaos in Hamiltonian Systems
2.4.1 Hamiltonian Systems,lntegrability and KAM Theorem
2.4.2 Stochastic Layers and Global Chaos
2.4.3 Arnol'dDiffusion
2.4.4 Higher-Dimensional Version ofMelnikov Theory
References

Chapter 3 Chaos in Planar Attitude Motion of Spacecraft
3.1 Rigid Spacecraft in an Elliptic Orbit
3.1.1 Introduction
3.1.2 Dynamical Model
3.1.3 MelnikovAnalysis
3.1.4 Numerical Simulations
3.2 Tethered Satellite Systems
3.2.1 Introductio
3.2.2 DynamicaI Models
3.2.3 MelnikovAnalysis of the Uncoupled Case
3.2.4 Numerical Simulations
3.3 Magnetic Rigid Spacecraft in a Circular Orbit
3.3.1 Introductio
3.3.2 Dynamical Model
3.3.3 MelnikovAnalysis
3.3.4 Numericallnvestigations: Undamped Case
3.3.5 Numericallnvestigations: Damped Case
3.4 Magnetic Rigid Spacecraft in an Elliptic Orbit
3.4.1 Introductio
3.4.2 Dynamical Model
3.4.3 Melnikov Analysis
3.4.4 Numerical Simulations
References

Chapter 4 Chaos in SpatiaIAffitude Motion of Spacecraft
4.1 Attitude Motion Describedby Serret-AndoyerVariables
4.1.1 Serret-AndoyerVariables
4.1.2 Torque-free Rigid Body
4.1.3 Torque-freeGyrostat
4.1.4 Gyrostat in the Gravitational Field
4.1.5 Influence ofthe Geomagnetic Field
4.2 Rigid-body Spacecraftin an Elliptic Orbit
4.2.1 Introduction
……
Chapter 5 Control of Chaotic Attitude Motion.


Intermittency is another frequently observed route to chaos.Intermittency is a phenomenon characterized by random alternations between a regular motion and relatively short irregular bursts.The term intermittency has been used in the theory of turbulence to denote burst of turbulent motion on the background of laminar flow.During early stages of intermittency,for a certain system parameter value,the motion of the system is predominantly periodic with occasional bursts of chaos.As the parameter value is changed,the chaotic bursts become more frequent,andthe time spent in a state of chaos increases and the time spent in periodic motion decreases until,finally,chaos is observed all the time.As a result,the periodic motion becomes chaotic motion. This route was found by Pomeou and Manneville in 1980 [8].Geometrically,the intermittency route is associated with a periodic attractor in the state space bifurcating into a new,larger chaotic attractor,including previous periodic trajectories as its subset.The trajectory of a system can reside some time in the chaotic part of the attractor,but it is ultimately attracted back to the periodic part.As the system parameter is varied,the relative proportion of the chaotic part increases,ultimately covering the whole attractor.
Quasiperiodic torus breakdown is the third typical way that a system may evolve as its parameter is changed. Quasiperiodic torus breakdown route signifies the destruction of the torus and the emergence of a chaotic attractor.The system,if it is not externally driven by a periodic action,may be at equilibrium.As the system parameter is varied,the equilibrium may lose its stability,leading to the emergence of a stable periodic motion.Such a change resulting in a new motion frequency iscalled the Hopf bifurcation.In the state space,a point attractor becomes a periodic attractor.With a further change in the parameter,the periodic attractor undergoes a secondary Hopf bifurcation,resulting in a 2-period quasiperiodic attractor.The trajectories in the state space reside on the surface of a torus.If the two frequencies are incommensurable,the trajectory eventually covers the surface of the torus.For some systems,further changes in the parameter result in the introduction of a third frequency.

購物須知

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。

無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約20個工作天;
海外無庫存之書籍,平均作業時間約45個工作天,然不保證確定可調到貨,尚請見諒。