瀏覽紀錄

TOP
除夕至初二春節期間,物流配送將視情況調整,請依出貨/取貨通知函為主,造成不便,敬請見諒。三民網路書店祝您新年快樂、萬事如意。
1/1
無庫存,下單後進貨(採購期約45個工作天)
應用泛函分析 第一卷(簡體書)
  • 應用泛函分析 第一卷(簡體書)

  • ISBN13:9787510005442
  • 出版社:世界圖書(北京)出版公司
  • 作者:(德)澤德勒
  • 裝訂/頁數:平裝/481頁
  • 規格:20.8cm*14.6cm (高/寬)
  • 版次:1
  • 出版日:2009/10/01
人民幣定價:59元
定  價:NT$354元
優惠價: 87308
可得紅利積點:9 點

無庫存,下單後進貨(採購期約45個工作天)

商品簡介

目次

《應用泛函分析(第1卷)(英文版)》內容簡介:More precisely, by (i), I mean a systematic presentation of the materialgoverned by the desire for mathematical perfection and completeness ofthe results. In contrast to (i), approach (ii) starts out from the questionWhat are the most important applications? and then tries to answer thisquestion as quickly as possible. Here, one walks directly on the main roadand does not wander into all the nice and interesting side roads.The present book is based on the second approach. It is addressed toundergraduate and beginning graduate students of mathematics, physics,and engineering who want to learn how functional analysis elegantly solvesma hematical problems that are related to our real world azld that haveplayed an important role in the history of mathematics. The reader shouldsense that the theory is being developed, not simply for its own sake, butfor the effective so這是一套2卷集的教科書,主要面向大學高年級本科書和低年級研究生。作者Zeidler另一套5卷集巨著“Nonlinear Functional Analysis & Its Applications”世圖已影印出版。與5卷集的巨著相比,篇幅雖然小了許多,但仍具有文字優美,寫作起點很低,具備本科數學水平就可以讀,應用都是從最簡單情形入手,應用領域的讀者也可以讀;全書材料自足,各部分又盡可能保持獨立等特點。 第1卷目次:巴拿赫空間和不動點定理;希爾伯特空間、標準正交性和的狄利克雷原理;希爾伯特空間和廣義傅裡葉級數;線性緊對稱算子用的本征值問題;自伴算子、Friedrichs擴張和數學物理中的偏微分方程。
讀者對象:數學、物理及工程專業的大學高年級本科書和低年級研究生。
Preface
Prologue
Contents of AMS Volume 109
1 Banach Spaces and Fixed-Point Theorems
1.1 Linear Spaces and Dimension
1.2 Normed Spaces and Convergence
1.3 Banach Spaces and the Cauchy Convergence Criterion
1.4 Open and Closed Sets
1.5 Operators
1.6 The Banach Fixed-Point Theorem and the Iteration Method
1.7 Applications to Integral Equations
1.8 Applications to Ordinary Differential Equations
1.9 Continuity
1.10 Convexity
1.11 Compactness
1.12 Finite-Dimensional Banach Spaces and Equivalent Norms
1.13 The Minkowski Functional and Homeomorphisms
1.14 The Brouwer Fixed-Point Theorem
1.15 The Schauder Fixed-Point Theorem
1.16 Applications to Integral Equations
1.17 Applications to Ordinary Differential Equations
1.18 The Leray-Schauder Principle and a priori Estimates
1.19 Sub-and Supersolutions, and the Iteration Method in Ordered Banach Spaces
1.20 Linear Operators
1.21 The Dual Space
1.22 Infinite Series in Normed Spaces
1.23 Banach Algebras and Operator Functions
1.24 Applications to Linear Differential Equations in Banach Spaces
1.25 Applications to the Spectrum
1.26 Density and Approximation
1.27 Summary of Important Notions

2 Hilbert Spaces, Orthogonality, and the Dirichlet
Principle
2.1 Hilbert Spaces
2.2 Standard Examples
2.3 Bilinear Forms
2.4 The Main Theorem on Quadratic Variational Problems
2.5 The Functional Analytic Justification of the Dirichlet Principle
2.6 The Convergence of the Ritz Method for Quadratic Variational Problems
2.7 Applications to Boundary-Value Problems, the Method of Finite Elements, and Elasticity
2.8 Generalized Functions and Linear Functionals
2.9 Orthogonal Projection
2.10 Linear Functionals and the Riesz Theorem
2.11 The Duality Map
2.12 Duality for Quadratic Variational Problems
2.13 The Linear Orthogonality Principle
2.14 Nonlinear Monotone Operators
2.15 Applications to the Nonlinear Lax-Milgram Theorem and the Nonlinear Orthogonality Principle

3 Hilbert Spaces and Generalized Fourier Series
3.1 Orthonormal Series
3.2 Applications to Classical Fourier Series
3.3 The Schmidt Orthogonalization Method
3.4 Applications to Polynomials
3.5 Unitary Operators
3.6 The Extension Principle
3.7 Applications to the Fourier Transformation
3.8 The Fourier Transform of Tempered Generalized Functions

4 Eigenvalue Problems for Linear Compact Symmetric Operators
4.1 Symmetric Operators
4.2 The Hilbert-Schmidt Theory
4.3 The Fredholm Alternative
4.4 Applications to Integral Equations
4.5 Applications to Boundary-Eigenvalue Value Problems

5 Self-Adjoint Operators, the Priedrichs Extension and the Partial Differential Equations of Mathematical
Physics
5.1 Extensions and Embeddings
5.2 Self-Adjoint Operators
5.3 The Energetic Space
5.4 The Energetic Extension
5.5 The Friedrichs Extension of Symmetric Operators
5.6 Applications to Boundary-Eigenvalue Problems for the Laplace Equation
5.7 The Poincar6 Inequality and Rellichs Compactness Theorem
5.8 Functions of Self-Adjoint Operators
5.9 Semigroups, One-Parameter Groups, and Their Physical Relevance
5.10 Applications to the Heat Equation
5.11 Applications to the Wave Equation
5.12 Applications to the Vibrating String and the Fourier Method
5.13 Applications to the SchrSdinger Equation
5.14 Applications to Quantum Mechanics
5.15 Generalized Eigenfunctions
5.16 Trace Class Operators
5.17 Applications to Quantum Statistics
5.18 C*-Algebras and the Algebraic Approach to Quantum Statistics
5.19 The Fock Space in Quantum Field Theory and the Pauli Principle
5.20 A Look at Scattering Theory
5.21 The Language of Physicists in Quantum Physics and the Justification of the Dirac Calculus
5.22 The Euclidean Strategy in Quantum Physics
5.23 Applications to Feynmans Path Integral
5.24 The Importance of the Propagator in Quantum Physics
5.25 A Look at Solitons and Inverse Scattering Theory
Epilogue
Appendix
References
Hints for Further Reading
List of Symbols
List of Theorems
List of the Most Important Definitions
Subject Index

購物須知

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。

無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約20個工作天;
海外無庫存之書籍,平均作業時間約45個工作天,然不保證確定可調到貨,尚請見諒。