This 2003 book relates the complete set of strength characteristics of constituent atoms to their electronic structures. These relationships require knowledge of both the chemistry and physics of materials. The book uses both classical and quantum mechanics, since both are needed to describe these properties, and begins with short reviews of each. Following these reviews, the three major branches of the strength of materials are given their own sections. They are: the elastic stiffnesses; the plastic responses; and the nature of fracture. This work will be of great value to academic and industrial research workers in the sciences of metallurgy, ceramics, microelectronics and polymers. It will also serve well as a supplementary text for the teaching of solid mechanics.
This 2003 book relates the complete set of strength characteristics of constituent atoms to their electronic structures. These relationships require knowledge of both the chemistry and physics of materials. The book uses both classical and quantum mechanics, since both are needed to describe these properties, and begins with short reviews of each. Following these reviews, the three major branches of the strength of materials are given their own sections. They are: the elastic stiffnesses; the plastic responses; and the nature of fracture. This work will be of great value to academic and industrial research workers in the sciences of metallurgy, ceramics, microelectronics and polymers. It will also serve well as a supplementary text for the teaching of solid mechanics.
Energetic materials are substances that undergo exothermic chemical reaction in response to some stimulus and react in time scales leading to combustion, explosion, and/or detonation (millisec to femt