TOP
紅利積點抵現金,消費購書更貼心
ENCYCLOPEDIA OF ELECTROCHEMISTRY V 5 - ELECTROCHEMICAL ENGINEERING
90折

ENCYCLOPEDIA OF ELECTROCHEMISTRY V 5 - ELECTROCHEMICAL ENGINEERING

商品資訊

定價
:NT$ 27900 元
優惠價
9025110
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
目次

商品簡介

This 11-volume encyclopedia provides both an easy introduction to all topics related to modern electrochemistry as well as a comprehensive overview of the subject. Unrivalled in its breadth and depth, this standard reference has been created and written by renowned scientists, covering everything from fundamental research to areas of application.

作者簡介

Series Editors:
Prof. Allen J. Bard:
Born December 18, 1933, Prof. Bard received his early education in the public schools of New York City and attended The City College of NY (B.Sc.,1955). He did his graduate work at Harvard Univ. with J.J. Lingane (MA, 1956; PhD, 1958) in electroanalytical chemistry. In 1958 he joined the faculty of The Univ.of Texas at Austin where he currently holds the Norman Hackerman/Welch Regents' Chair in Chemistry. His research interests have been in the application of electrochemical methods to the study of chemical problems and include investigations in electro-organic chemistry, photoelectrochemistry, electrogenerated chemiluminescence, and electroanalytical chemistry. He has published three books (Electrochemical Methods, with Larry Faulkner, Integrated Chemical Systems, and Chemical Equilibrium) and over 600 papers and chapters while editing the series Electroanalytical Chemistry (21 volumes) and the Encyclopedia of the Electrochemistry of the Elements (16 volumes) plus co-editing the monograph, Standard Potentials in Aqueous Solution. He is currently editor-in-chief of the Journal of the American Chem. Society. The ISI listing of the "50 most cited chemists from 1981-1997" ranks Prof. Bard at number 13 (taken from a total of 627,871 chemists surveyed).

Prof. Martin Stratmann: Born 20 April 1954, studied chemistry at the Ruhr Univ.Bochum and received his diploma in 1980. He finished his PhD in 1982 at the Max Planck Inst.(MPI) f?enforschung in D?orf. His professorship in physical chemistry followed in 1992 at the Univ.of D?orf with electrochemical studies on metal surfaces covered with ultrathin electrolyte layers. In 1994 he took over the Chair in Corrosion Sci.and Surface Engin.at the Univ.of Erlangen and since 2000 has been a scientific member of the MPI and director at the MPI f?enforschung D?orf, heading a department of interface chemistry and surface engineering. His research interests concentrate on corrosion related electrochemistry, in particular with emphasis on microscopic aspects and in-situ spectroscopy, electrochemistry at buried metal/polymer interfaces - an area where he pioneered novel electrochemical techniques - atmospheric corrosion, adhesion and surface chemistry of reactive metal substrates. He has published more than 150 papers and is co-editor of Steel Research and Materials and Corrosion.

目次

Preface.

1 Why Modelling?

1.1 Process and Process Modelling.

1.2 Observations on Some General Aspects of Modelling Methodology.

1.3 The Life-cycle of a Process and Modelling.

1.3.1 Modelling and Research and Development Stage.

1.3.2 Modelling and Conceptual Design Stage.

1.3.3 Modelling and Pilot Stage.

1.3.4 Modelling and Detailed Engineering Stage.

1.3.5 Modelling and Operating Stage.

1.4 Actual Objectives for Chemical Engineering Research.

1.5 Considerations About the Process Simulation.

1.5.1 The Simulation of a Physical Process and Analogous Computers.

References.

2 On the Classification of Models.

2.1 Fields of Modelling and Simulation in Chemical Engineering.

2.1.1 Steady-state Flowsheet Modelling and Simulation.

2.1.2 Unsteady-state Process Modelling and Simulation.

2.1.3 Molecular Modelling and Computational Chemistry.

2.1.4 Computational Fluid Dynamics.

2.1.5 Optimisation and Some Associated Algorithms and Methods.

2.1.6 Artificial Intelligence and Neural Networks.

2.1.7 Environment, Health, Safety and Quality Models.

2.1.8 Detailed Design Models and Programs.

2.1.9 Process Control.

2.1.10 Estimation of Parameters.

2.1.11 Experimental Design.

2.1.12 Process Integration.

2.1.13 Process Synthesis.

2.1.14 Data Reconciliation.

2.1.15 Mathematical Computing Software.

2.1.16 Chemometrics.

2.2 Some Observations on the Practical Use of Modelling and Simulation.

2.2.1 Reliability of Models and Simulations.

2.2.2 The Role of Industry as Final User of Modelling and Simulation.

2.2.3 Modelling and Simulation in Innovations.

2.2.4 Role of Modelling in Technology Transfer and Knowledge Management.

2.2.5 Role of the Universities in Modelling and Simulation Development.

References.

3 Mathematical Modelling Based on Transport Phenomena.

3.1 Algorithm for the Development of a Mathematical Model of a Process.

3.1.1 Some Observations about the Start of the Research.

3.1.2 The Limits of Modelling Based on Transport Phenomena.

3.2 An Example: From a Written Description to a Simulator.

3.3 Chemical Engineering Flow Models.

3.3.1 The Distribution Function and the Fundamental Flow Models.

3.3.2 Combined Flow Models.

3.3.3 The Slip Flow Effect on the Efficiency of a Mechanically Mixed Reactor in a Permanent Regime.

3.3.4 Dispersion Flow Model.

3.3.5 Examples.

3.3.5.1 Mechanically Mixed Reactor for Reactions in Liquid Media.

3.3.5.2 Gas Flow in a Fluidized Bed Reactor.

3.3.5.3 Flow in a Fixed Bed Catalytic Reactor.

3.3.6 Flow Modelling using Computational Fluid Dynamics.

3.4 Complex Models and Their Simulators.

3.4.1 Problem of Heating in a Zone Refining Process.

3.4.2 Heat Transfer in a Composite Medium.

3.4.3 Fast Chemical Reaction Accompanied by Heat and Mass Transfer.

3.5 Some Aspects of Parameters Identification in Mathematical Modelling.

3.5.1 The Analytical Method for Identifying the Parameters of a Model.

3.5.1.1 The Pore Radius and Tortuosity of a Porous Membrane for Gas Permeation.

3.5.2 The Method of Lagrange Multiplicators.

3.5.2.1 One Geometrical Problem.

3.5.3 The Use of Gradient Methods for the Identification of Parameters.

3.5.3.1 Identification of the Parameters of a Model by the Steepest Slope Method.

3.5.3.2 Identifying the Parameters of an Unsteady State Perfectly Mixed Reactor.

3.5.4 The Gauss–Newton Gradient Technique.

3.5.4.1 The Identification of Thermal Parameters for the Case of the Cooling of a Cylindrical Body.

3.5.4.2 Complex Models with One Unknown Parameter.

3.5.5 Identification of the Parameters of a Model by the Maximum Likelihood Method.

3.5.5.1 The Kalman Filter Equations.

3.5.5.2 Example of the Use of the Kalman Filter.

3.6 Some Conclusions.

References.

4 Stochastic Mathematical Modelling.

4.1 Introduction to Stochastic Modelling.

4.1.1 Mechanical Stirring of a Liquid.

4.1.2 Numerical Application.

4.2 Stochastic Models by Probability Balance.

4.2.1 Solid Motion in a Liquid Fluidized Bed.

4.3 Mathematical Models of Continuous and Discrete Polystochastic Processes.

4.3.1 Polystochastic Chains and Their Models.

4.3.1.1 Random Chains and Systems with Complete Connections.

4.3.2 Continuous Polystochastic Process.

4.3.3 The Similarity between the Fokker–Plank–Kolmogorov Equation and the Property Transport Equation.

4.3.3.1 Stochastic Differential Equation Systems for Heat and Mass Molecular Transport.

4.4 Methods for Solving Stochastic Models.

4.4.1 The Resolution of Stochastic Models by Means of Asymptotic Models.

4.4.1.1 Stochastic Models Based on Asymptotic Polystochastic Chains.

4.4.1.2 Stochastic Models Based on Asymptotic Polystochastic Processes.

4.4.1.3 Asymptotic Models Derived from Stochastic Models with Differential Equations.

4.4.2 Numerical Methods for Solving Stochastic Models.

4.4.3 The Solution of Stochastic Models with Analytical Methods.

4.5 Use of Stochastic Algorithms to Solve Optimization Problems.

4.6 Stochastic Models for Chemical Engineering Processes.

4.6.1 Liquid and Gas Flow in a Column with a Mobile Packed Bed.

4.6.1.1 Gas Hold-up in a MWPB.

4.6.1.2 Axial Mixing of Liquid in a MWPB.

4.6.1.3 The Gas Fraction in a Mobile Flooded Packed Bed.

4.6.2 Species Movement and Transfer in a Porous Medium.

4.6.2.1 Liquid Motion Inside a Porous Medium.

4.6.2.2 Molecular Species Transfer in a Porous Solid.

4.6.3 Stochastic Models for Processes with Discrete Displacement.

4.6.3.1 The Computation of the Temperature State of a Heat Exchanger.

4.6.3.2 Cellular Stochastic Model for a Countercurrent Flow with Recycling.

References.

5 Statistical Models in Chemical Engineering.

5.1 Basic Statistical Modelling.

5.2 Characteristics of the Statistical Selection.

5.2.1 The Distribution of Frequently Used Random Variables.

5.2.2 Intervals and Limits of Confidence.

5.2.2.1 A Particular Application of the Confidence Interval to a Mean Value.

5.2.2.2 An Actual Example of the Calculation of the Confidence Interval for the Variance.

5.2.3 Statistical Hypotheses and Their Checking.

5.3 Correlation Analysis.

5.4 Regression Analysis.

5.4.1 Linear Regression.

5.4.1.1 Application to the Relationship between the Reactant Conversion and the Input Concentration for a CSR.

5.4.2 Parabolic Regression.

5.4.3 Transcendental Regression.

5.4.4 Multiple Linear Regression.

5.4.4.1 Multiple Linear Regressions in Matrix Forms.

5.4.5 Multiple Regression with Monomial Functions.

5.5 Experimental Design Methods.

5.5.1 Experimental Design with Two Levels (2k Plan).

5.5.2 Two-level Experiment Plan with Fractionary Reply.

5.5.3 Investigation of the Great Curvature Domain of the Response Surface: Sequential Experimental Planning.

5.5.4 Second Order Orthogonal Plan.

5.5.4.1 Second Order Orthogonal Plan, Example of the Nitration of an Aromatic Hydrocarbon.

5.5.5 Second Order Complete Plan.

5.5.6 Use of Simplex Regular Plan for Experimental Research.

5.5.6.1 SRP Investigation of a Liquid–Solid Extraction in Batch.

5.5.7 On-line Process Analysis by the EVOP Method.

5.5.7.1 EVOP Analysis of an Organic Synthesis.

5.5.7.2 Some Supplementary Observations.

5.6 Analysis of Variances and Interaction of Factors.

5.6.1 Analysis of the Variances for a Monofactor Process.

5.6.2 Analysis of the Variances for Two Factors Processes.

5.6.3 Interactions Between the Factors of a Process.

5.6.3.1 Interaction Analysis for a CFE 2n Plan.

5.6.3.2 Interaction Analysis Using a High Level Factorial Plan.

5.6.3.3 Analysis of the Effects of Systematic Influences.

5.7 Use of Neural Net Computing Statistical Modelling.

5.7.1 Short Review of Artificial Neural Networks.

5.7.2 Structure and Threshold Functions for Neural Networks.

5.7.3 Back-propagation Algorithm.

5.7.4 Application of ANNs in Chemical Engineering.

References.

6 Similitude, Dimensional Analysis and Modelling.

6.1 Dimensional Analysis in Chemical Engineering.

6.2 Vaschy–Buckingham Pi Theorem.

6.2.1 Determination of Pi Groups.

6.3 Chemical Engineering Problems Particularized by Dimensional Analysis.

6.3.1 Dimensional Analysis for Mass Transfer by Natural Convection in Finite Space.

6.3.2 Dimensional Analysis Applied to Mixing Liquids.

6.4 Supplementary Comments about Dimensional Analysis.

6.4.1 Selection of Variables.

6.4.1.1 Variables Imposed by the Geometry of the System.

6.4.1.2 Variables Imposed by the Properties of the Materials.

6.4.1.3 Dynamic Internal Effects.

6.4.1.4 Dynamic External Effects.

6.5 Uniqueness of Pi Terms.

6.6 Identification of Pi Groups Using the Inspection Method.

6.7 Common Dimensionless Groups and Their Relationships.

6.7.1 Physical Significance of Dimensionless Groups.

6.6.2 The Dimensionless Relationship as Kinetic Interface Property Transfer Relationship.

6.6.3 Physical Interpretation of the Nu, Pr, Sh and Sc Numbers.

6.6.4 Dimensionless Groups for Interactive Processes.

6.6.5 Common Dimensionless Groups in Chemical Engineering.

6.7 Particularization of the Relationship of Dimensionless Groups Using Experimental Data.

6.7.1 One Dimensionless Group Problem.

6.7.2 Data Correlation for Problems with Two Dimensionless Groups.

6.7.3 Data Correlation for Problems with More than Two Dimensionless Groups.

6.8 Physical Models and Similitude.

6.8.1 The Basis of the Similitude Theory.

6.8.2 Design Aspects: Role of CSD in Compensating for Significant Model Uncertainties.

6.8.2.1 Impact of Uncertainties and the Necessity for a Control System Design.

6.9 Some Important Particularities of Chemical Engineering Laboratory Models.

References.

Index.

購物須知

外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。

無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

優惠價:90 25110
若需訂購本書,請電洽客服 02-25006600[分機130、131]。

暢銷榜

客服中心

收藏

會員專區