Learning in Graphical Models
商品資訊
ISBN13:9780262600323
出版社:Bradford Books
作者:Michael Irwin Jordan
出版日:1999/01/20
裝訂/頁數:平裝/644頁
規格:26cm*17.8cm*3.2cm (高/寬/厚)
商品簡介
商品簡介
Graphical models, a marriage between probability theory and graph theory, provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering--uncertainty and complexity. In particular, they play an increasingly important role in the design and analysis of machine learning algorithms. Fundamental to the idea of a graphical model is the notion of modularity: a complex system is built by combining simpler parts. Probability theory serves as the glue whereby the parts are combined, ensuring that the system as a whole is consistent and providing ways to interface models to data. Graph theory provides both an intuitively appealing interface by which humans can model highly interacting sets of variables and a data structure that lends itself naturally to the design of efficient general-purpose algorithms.This book presents an in-depth exploration of issues related to learning within the graphical model formalism. Four chapters are tutorial chapters--Robert Cowell on Inference for Bayesian Networks, David MacKay on Monte Carlo Methods, Michael I. Jordan et al. on Variational Methods, and David Heckerman on Learning with Bayesian Networks. The remaining chapters cover a wide range of topics of current research interest.
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

