Data Mining For Bioinformatics
商品資訊
ISBN13:9780849328015
出版社:Taylor & Francis
作者:Not Available (NA)
出版日:2012/08/30
裝訂/頁數:精裝/328頁
規格:23.5cm*15.9cm*2.5cm (高/寬/厚)
版次:1
商品簡介
Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to help readers from both biology and computer science backgrounds gain an enhanced understanding of this cross-disciplinary field.
The book offers authoritative coverage of data mining techniques, technologies, and frameworks used for storing, analyzing, and extracting knowledge from large databases in the bioinformatics domains, including genomics and proteomics. It begins by describing the evolution of bioinformatics and highlighting the challenges that can be addressed using data mining techniques. Introducing the various data mining techniques that can be employed in biological databases, the text is organized into four sections:
- Supplies a complete overview of the evolution of the field and its intersection with computational learning
- Describes the role of data mining in analyzing large biological databases—explaining the breath of the various feature selection and feature extraction techniques that data mining has to offer
- Focuses on concepts of unsupervised learning using clustering techniques and its application to large biological data
- Covers supervised learning using classification techniques most commonly used in bioinformatics—addressing the need for validation and benchmarking of inferences derived using either clustering or classification
The book describes the various biological databases prominently referred to in bioinformatics and includes a detailed list of the applications of advanced clustering algorithms used in bioinformatics. Highlighting the challenges encountered during the application of classification on biological databases, it considers systems of both single and ensemble classifiers and shares effort-saving tips for model selection and performance estimation strategies.
作者簡介
Sumeet Dua is an Upchurch endowed professor of computer science and Interim director of computer science, electrical engineering, and electrical engineering technology in the College of Engineering and Science at Louisiana Tech University. He obtained his PhD in computer science from Louisiana State University in 2002. He has coauthored/edited 3 books, has published over 50 research papers in leading journals and conferences, and has advised over 22 graduate thesis and dissertations in the areas of data mining, knowledge discovery, and computational learning in high-dimensional datasets. NIH, NSF, AFRL, AFOSR, NASA, and LA-BOR have supported his research. He frequently serves as a panelist for the NSF and NIH (over 17 panels) and has presented over 25 keynotes, invited talks, and workshops at international conferences and educational institutions. He has also served as the overall program chair for three international conferences and as a chair for multiple conference tracks in the areas of data mining applications and information intelligence. He is a senior member of the IEEE and the ACM. His research interests include information discovery in heterogeneous and distributed datasets, semisupervised learning, content-based feature extraction and modeling, and pattern tracking.
Pradeep Chowriappa is a research assistant professor in the College of Engineering and Science at Louisiana Tech University. His research focuses on the application of data mining algorithms and frameworks on biological and clinical data. Before obtaining his PhD in computer analysis and modeling from Louisiana Tech University in 2008, he pursued a yearlong internship at the Indian Space Research Organization (ISRO), Bangalore, India. He received his masters in computer applications from the University of Madras, Chennai, India, in 2003 and his bachelor’s in science and engineering from Loyola Academy, Secunderabad, India, in 2000. His research interests include design and analysis of algorithms for knowledge discovery and modeling in high-dimensional data domains in computational biology, distributed data mining, and domain integration.
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

