Fractional Kinetics in Solids
商品資訊
ISBN13:9789814355421
出版社:World Scientific Pub Co Inc
作者:Vladimir Uchaikin; Renat Sibatov
出版日:2011/11/30
裝訂/頁數:精裝/250頁
定價
:NT$ 3332 元優惠價
:
90 折 2999 元
無庫存,下單後進貨(採購期約4~10個工作天)
下單可得紅利積點:89 點
商品簡介
商品簡介
The standard (Markovian) transport model based on the Boltzmann equation cannot describe some non-equilibrium processes called anomalous that take place in many disordered solids. Causes of anomality lie in non-uniformly scaled (fractal) spatial heterogeneities, in which particle trajectories take cluster form. Furthermore, particles can be located in some domains of small sizes (traps) for a long time. Estimations show that path length and waiting time distributions are often characterized by heavy tails of the power law type. This behavior allows the introduction of time and space derivatives of fractional orders. Distinction of path length distribution from exponential is interpreted as a consequence of media fractality, and analogous property of waiting time distribution as a presence of memory.In this book, a novel approach using equations with derivatives of fractional orders is applied to describe anomalous transport and relaxation in disordered semiconductors, dielectrics and quantum dot systems. A relationship between the self-similarity of transport, the Levy stable limiting distributions and the kinetic equations with fractional derivatives is established. It is shown that unlike the well-known Scher–Montroll and Arkhipov–Rudenko models, which are in a sense alternatives to the normal transport model, fractional differential equations provide a unified mathematical framework for describing normal and dispersive transport. The fractional differential formalism allows the equations of bipolar transport to be written down and transport in distributed dispersion systems to be described. The relationship between fractional transport equations and the generalized limit theorem reveals the probabilistic aspects of the phenomenon in which a dispersive to Gaussian transport transition occurs in a time-of-flight experiment as the applied voltage is decreased and/or the sample thickness increased. Recent experiments devoted to studies of transport in quantum dot arrays are discussed in the framework of dispersive transport models. The memory phenomena in systems under consideration are discussed in the analysis of fractional equations.It is shown that the approach based on the anomalous transport models and the fractional kinetic equations may be very useful in some problems that involve nano-sized systems. These are photon counting statistics of blinking single quantum dot fluorescence, relaxation of current in colloidal quantum dot arrays, and some others.
主題書展
更多
主題書展
更多書展購物須知
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

