TOP
紅利積點抵現金,消費購書更貼心
Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn
滿額折

Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn

商品資訊

定價
:NT$ 2203 元
無庫存,下單後進貨(到貨天數約30-45天)
下單可得紅利積點:66 點
商品簡介

商品簡介

Chapter 1: Understanding Machine Learning and Deep Learning.

Chapter goal: It carefully presents supervised and unsupervised ML and DL models and their application in the real world.

  • Understanding Machine Learning.

  • Supervised Learning.

    • The Parametric Method.

    • The Non-parametric method.

    • Ensemble Methods.

  • Unsupervised Learning.

    • Cluster Analysis.

    • Dimension Reduction.

  • Exploring Deep Learning.

  • Conclusion.

Chapter 2: Big Data Frameworks and ML and DL Frameworks.

Chapter goal: It explains a big data framework recognized as PySpark, machine learning frameworks like SciKit-Learn, XGBoost, and H2O, and a deep learning framework called Keras.

  • Big Data Frameworks and ML and DL Frameworks.

  • Big Data.

    • Characteristics of Big Data.

  • Impact of Big Data on Business and People.

    • Better Customer Relationships.

    • Refined Product Development.

    • Improved Decision-Making.

  • Big Data Warehousing.

    • Big Data ETL.

  • Big Data Frameworks.

    • Apache Spark.

      • Resilient Distributed Datasets.

      • Spark Configuration.

      • Spark Frameworks.

  • ML Frameworks.

  • SciKit-Learn.

  • H2O.

  • XGBoost.

  • DL Frameworks.

    • Keras.

  • Conclusion.

  • Chapter 3: The Parametric Method - Linear Regression.

    Chapter goal: It considers the most popular parametric model - the Generalized Linear Model.

    • Regression Analysis.

    • Regression in practice.

      • SciKit-Learn in action.

      • Spark MLlib in action.

      • H2O in action.

    • Conclusion.

    Chapter 4: Survival Regression Analysis.

    Chapter goal: It covers two main survival regression analysis models, the Cox Proportional Hazards and Accelerated Failure Time model.

    • Cox Proportional Hazards.

    • Lifeline in action.

  • Accelerated Failure Time (AFT) model.

    • Spark MLlib in Action.

  • Conclusion.

  • Chapter 5: The Non-Parametric Method - Classification.

    Chapter goal: It covers a binary classification model, recognized as Logistic Regression, using SciKit-Learn, Keras, PySpark MLlib, and H2O.

  • Logistic Regression.

  • Logistic Regression in Practice.

    • SciKit-Learn in action.

    • Spark MLlib in Action.

    • H2O in action.

  • Conclusion.

  • Chapter 6: Tree-based Modelling and Gradient Boosting.

    Chapter goal: It covers two main ensemble methods, the decision tree model and the gradient boost model.

  • Decision Tree.

    • SciKit-Learn in action.

  • Gradient Boosting.

    • XGBoost in action.

    • Spark MLlib in Action.

    • H2O in action.

  • Conclusion.

  • Chapter 7: Artificial Neural Networks.

    Chapter goal: It covers deep learning and its application in the real world. It shows ways of designing, building, and testing an MLP classifier using the SciKit-Learn framework and an artificial neural network using the Keras framework.

  • Deep Learning.

    • Restricted Boltzmann Machine.

  • Multi-Layer Perception Neural Network.

    • SciKit-Learn in action.

    • Deep Belief Networks.

    • Keras in action.

    • H2O in action.

  • Conclusion.

  • Chapter 8: Cluster Analysis using K-Means.

    Chapter goal: It covers a technique of finding k, modelling and evaluating a cluster model known as K-Means using framework

    購物須知

    外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。

    無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。

    為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

    若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

    定價:100 2203
    無庫存,下單後進貨
    (到貨天數約30-45天)

    暢銷榜

    客服中心

    收藏

    會員專區