TOP
紅利積點抵現金,消費購書更貼心
Cluster Analysis and Applications
90折

Cluster Analysis and Applications

商品資訊

定價
:NT$ 3479 元
優惠價
903131
無庫存,下單後進貨(到貨天數約30-45天)
下單可得紅利積點:93 點
商品簡介

商品簡介

1 Introduction

2 Representatives

2.1 Representative of data sets with one feature

2.1.1 Best LS-representativ

2.1.2 Best 1-representative

2.1.3 Best representative of weighted data

2.1.4 Bregman divergences

2.2 Representative of data sets with two features

2.2.1 Fermat-Torricelli-Weber problem

2.2.2 Centroid of a set in the plane

2.2.3 Median of a set in the plane

2.2.4 Geometric median of a set in the plane

2.3 Representative of data sets with several features

2.3.1 Representative of weighted data

2.4 Representative of periodic data

2.4.1 Representative of data on the unit circle

2.4.2 Burn diagram

3 Data clustering

3.1 Optimal k-partition

3.1.1 Minimal distance principle and Voronoi diagram

3.1.2 k-means algorithm

3.2 Clustering data with one feature

3.2.1 Application of the LS-distance-like function

3.2.2 The dual problem

3.2.3 Least absolute deviation principle

3.2.4 Clustering weighted data

3.3 Clustering data with two or several features

3.3.1 Least squares principle

3.3.2 The dual problem

3.3.3 Least absolute deviation principle

3.4 Objective function F(c1, . . ., ck) = Pm i=1 min 1

4 Searching for an optimal partition

4.1 Solving the global optimization problem directly

4.2 k-means algorithm II

4.2.1 Objective function F using the membership matrix

4.2.2 Coordinate Descent Algorithms

4.2.3 Standard k-means algorithm

4.2.4 k-means algorithm with multiple activations

4.3 Incremental algorithm

4.4 Hierarchical algorithms

4.4.1 Introduction and motivation

4.4.2 Applying the Least Squares Principle

4.5 DBSCAN method

4.5.1 Parameters MinPts and

4.5.2 DBSCAN algorithm

4.5.3 Numerical examples

5 Indexes

5.1 Choosing a partition with the most appropriate number of clusters

5.1.1 Calinski-Harabasz index

5.1.2 Davies-Bouldin index

5.1.3 Silhouette Width Criterion

5.1.4 Dunn index

5.2 Comparing two partitions

5.2.1 Rand index of two partitions

5.2.2 Application of the Hausdorff distance

6 Mahalanobis data clustering

6.1 Total least squares line in the plane

6.2 Mahalanobis distance-like function in the plane

6.3 Mahalanobis distance induced by a set in the plane

6.3.1 Mahalanobis distance induced by a set of points in R n

6.4 Methods to search for optimal partition with ellipsoidal clusters

6.4.1 Mahalanobis k-means algorithm

6.4.2 Mahalanobis incremental algorithm

6.4.3 Expectation Maximization algorithm for Gaussian mixtures

6.4.4 Expectation Maximization algorithm for normalized Gaussian mixtures and Mahalanobis k-means algorithm

6.5 Choosing partition with the most appropriate number of ellipsoidal clusters

7 Fuzzy clustering problem

7.1 Determining membership functions and centers

7.1.1 Membership functions

7.1.2 Centers

7.2 Searching for an optimal fuzzy partition with spherical clusters

7.2.1 Fuzzy c-means algorithm

7.2.2 Fuzzy incremental clustering algorithm (FInc) 159

7.2.3 Choosing the most appropriate number of clusters

7.3 Methods to search for an optimal fuzzy partition with ellipsoidal clusters

7.3.1 Gustafson-Kessel c-means algorithm

7.3.2 Mahalanobis fuzzy incremental algorithm (MFInc)

7.3.3 Choosing the most appropriate number of clusters

7.4 Fuzzy variant of the Rand index

7.4.1 Applications

8 Applications

8.1 Multiple geometric objects detection problem and applications

8.1.1 Multiple circles detection problem

8.1.2 Multiple e

購物須知

外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。

無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

優惠價:90 3131
無庫存,下單後進貨
(到貨天數約30-45天)

暢銷榜

客服中心

收藏

會員專區