Deep Learning for Genomics: Data-driven approaches for genomics applications in life sciences and biotechnology
商品資訊
ISBN13:9781804615447
出版社:PACKT PUB
作者:Upendra Kumar Devisetty
出版日:2022/11/11
裝訂:平裝
規格:23.5cm*19.1cm*1.4cm (高/寬/厚)
商品簡介
Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries
Key Features:
- Apply deep learning algorithms to solve real-world problems in the field of genomics
- Extract biological insights from deep learning models built from genomic datasets
- Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics
Book Description:
Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets.
By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics.
What You Will Learn:
- Discover the machine learning applications for genomics
- Explore deep learning concepts and methodologies for genomics applications
- Understand supervised deep learning algorithms for genomics applications
- Get to grips with unsupervised deep learning with autoencoders
- Improve deep learning models using generative models
- Operationalize deep learning models from genomics datasets
- Visualize and interpret deep learning models
- Understand deep learning challenges, pitfalls, and best practices
Who this book is for:
This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts.
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

