TOP
紅利積點抵現金,消費購書更貼心
Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged sof

Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged sof

商品資訊

定價
:NT$ 2250 元
無庫存,下單後進貨(到貨天數約30-45天)
下單可得紅利積點 :67 點
商品簡介

商品簡介

Efficiently transform your initial designs into big systems by learning the foundations of infrastructure, algorithms, and ethical considerations for modern software products


Key Features:

  • Learn how to scale-up your machine learning software to a professional level
  • Secure the quality of your machine learning pipeline at runtime
  • Apply your knowledge to natural languages, programming languages, and images


Book Description:

Although creating a machine learning pipeline or developing a working prototype of a software system from that pipeline is easy and straightforward nowadays, the journey toward a professional software system is still extensive. This book will help you get to grips with various best practices and recipes that will help software engineers transform prototype pipelines into complete software products.

The book begins by introducing the main concepts of professional software systems that leverage machine learning at their core. As you progress, you'll explore the differences between traditional, non-ML software, and machine learning software. The initial best practices will guide you in determining the type of software you need for your product. Subsequently, you will delve into algorithms, covering their selection, development, and testing before exploring the intricacies of the infrastructure for machine learning systems by defining best practices for identifying the right data source and ensuring its quality.

Towards the end, you'll address the most challenging aspect of large-scale machine learning systems - ethics. By exploring and defining best practices for assessing ethical risks and strategies for mitigation, you will conclude the book where it all began - large-scale machine learning software.


What You Will Learn:

  • Identify what the machine learning software best suits your needs
  • Work with scalable machine learning pipelines
  • Scale up pipelines from prototypes to fully fledged software
  • Choose suitable data sources and processing methods for your product
  • Differentiate raw data from complex processing, noting their advantages
  • Track and mitigate important ethical risks in machine learning software
  • Work with testing and validation for machine learning systems


Who this book is for:

If you're a machine learning engineer, this book will help you design more robust software, and understand which scaling-up challenges you need to address and why. Software engineers will benefit from best practices that will make your products robust, reliable, and innovative. Decision makers will also find lots of useful information in this book, including guidance on what to look for in a well-designed machine learning software product.

購物須知

外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。

無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

定價:100 2250
無庫存,下單後進貨
(到貨天數約30-45天)

暢銷榜

客服中心

收藏

會員專區