15 Math Concepts Every Data Scientist Should Know: Understand and learn how to apply the math behind data science algorithms
商品資訊
ISBN13:9781837634187
出版社:PACKT PUB
作者:David Hoyle
出版日:2024/08/16
裝訂:平裝
規格:23.5cm*19.1cm*2.6cm (高/寬/厚)
商品簡介
Create more effective and powerful data science solutions by learning when, where, and how to apply key math principles that drive most data science algorithms
Key Features:
- Understand key data science algorithms with Python-based examples
- Increase the impact of your data science solutions by learning how to apply existing algorithms
- Take your data science solutions to the next level by learning how to create new algorithms
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
Data science combines the power of data with the rigor of scientific methodology, with mathematics providing the tools and frameworks for analysis, algorithm development, and deriving insights. As machine learning algorithms become increasingly complex, a solid grounding in math is crucial for data scientists. David Hoyle, with over 30 years of experience in statistical and mathematical modeling, brings unparalleled industrial expertise to this book, drawing from his work in building predictive models for the world's largest retailers.
Encompassing 15 crucial concepts, this book covers a spectrum of mathematical techniques to help you understand a vast range of data science algorithms and applications. Starting with essential foundational concepts, such as random variables and probability distributions, you'll learn why data varies, and explore matrices and linear algebra to transform that data. Building upon this foundation, the book spans general intermediate concepts, such as model complexity and network analysis, as well as advanced concepts such as kernel-based learning and information theory. Each concept is illustrated with Python code snippets demonstrating their practical application to solve problems.
By the end of the book, you'll have the confidence to apply key mathematical concepts to your data science challenges.
What You Will Learn:
- Master foundational concepts that underpin all data science applications
- Use advanced techniques to elevate your data science proficiency
- Apply data science concepts to solve real-world data science challenges
- Implement the NumPy, SciPy, and scikit-learn concepts in Python
- Build predictive machine learning models with mathematical concepts
- Gain expertise in Bayesian non-parametric methods for advanced probabilistic modeling
- Acquire mathematical skills tailored for time-series and network data types
Who this book is for:
This book is for data scientists, machine learning engineers, and data analysts who already use data science tools and libraries but want to learn more about the underlying math. Whether you're looking to build upon the math you already know, or need insights into when and how to adopt tools and libraries to your data science problem, this book is for you. Organized into essential, general, and selected concepts, this book is for both practitioners just starting out on their data science journey and experienced data scientists.
Table of Contents
- Recap of Mathematical Notation and Terminology
- Random Variables and Probability Distributions
- Matrices and Linear Algebra
- Loss Functions and Optimization
- Probabilistic Modeling
- Time Series and Forecasting
- Hypothesis Testing
- Model Complexity
- Function Decomposition
- Network Analysis
- Dynamical Systems
- Kernel Methods
- Information Theory
- Non-Parametric Bayesian Methods
- Random Matrices
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

