Regression Analysis with Classical and Statistical Learning Methods: An Easy Guide for Data Scientists, Business Analysts and Engineers using Python
商品資訊
ISBN13:9789348642516
出版社:Lightning Source Inc
作者:K. C. James
出版日:2025/03/01
裝訂:平裝
規格:25.4cm*17.8cm*2.6cm (高/寬/厚)
商品簡介
Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.
The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning.
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

