Reinforcement Learning for Trading: Build Intelligent Agents with Python and AI - A Comprehensive Guide for 2025
商品資訊
ISBN13:9798280119420
出版社:Independently published
作者:Reactive Publishing
出版日:2025/04/15
裝訂:平裝
規格:22.9cm*15.2cm*2.5cm (高/寬/厚)
商品簡介
Step beyond traditional algorithmic trading-into the realm of true machine intelligence.
In this groundbreaking guide, James Preston empowers you to build trading agents that learn, adapt, and thrive in dynamic markets using Reinforcement Learning (RL). Whether you're a quant, data scientist, or ambitious retail trader, this book gives you the tools to implement cutting-edge AI that thinks like a trader-and evolves like one.
Inside, you'll master:The foundations of RL: Q-learning, Policy Gradients, and Actor-Critic methods
Designing trading environments with OpenAI Gym-style simulations
Building and training deep RL agents using TensorFlow & PyTorch
Real-world market applications: position sizing, momentum strategies, and risk-aware decision-making
Backtesting RL agents vs. traditional algos for performance benchmarks
Online learning loops that adapt to changing volatility and macro regimes
This is more than theory. It's a practical blueprint for developing intelligent, autonomous trading strategies using the most powerful AI framework available today.
Whether you're developing institutional-grade systems or pioneering the frontier of retail automation-this book is your launchpad.
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

