Federated Learning: From Theory to Practice
商品資訊
ISBN13:9789819510085
出版社:Springer
作者:Alexander Jung
出版日:2025/10/21
裝訂:精裝
定價
:NT$ 4059 元若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
商品簡介
How can we train powerful machine learning models together--across smartphones, hospitals, or financial institutions--without ever sharing raw data? This book delivers a compelling answer through the lens of federated learning (FL), a cutting-edge paradigm for decentralized, privacy-preserving machine learning. Designed for students, engineers, and researchers, this book offers a principled yet practical roadmap to building secure, scalable, and trustworthy FL systems from scratch. At the heart of this book is a unifying framework that treats FL as a network-regularized optimization problem. This elegant formulation allows readers to seamlessly address personalization, robustness, and fairness--challenges often tackled in isolation. You'll learn how to structure FL networks based on task similarity, leverage graph-based methods and apply distributed optimization techniques to implement FL systems. Detailed pseudocode, intuitive explanations, and implementation-ready algorithms ensure you not only understand the theory but can apply it in real-world systems. Topics such as privacy leakage analysis, model heterogeneity, and adversarial resilience are treated with both mathematical rigor and accessibility. Whether you're building decentralized AI for regulated industries or in settings where data, users, or system conditions change over time, this book equips you to design FL systems that are both performant and trustworthy.
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

