Practical Genetic Algorithms, Second Edition With Website
商品資訊
ISBN13:9780471455653
出版社:John Wiley & Sons Inc
作者:Haupt
出版日:2004/05/17
裝訂/頁數:平裝/288頁
規格:24.8cm*16.5cm*1.9cm (高/寬/厚)
定價
:NT$ 5698 元優惠價
:
90 折 5128 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
名人/編輯推薦
目次
商品簡介
* This book deals with the fundamentals of genetic algorithms and their applications in a variety of different areas of engineering and science
* Most significant update to the second edition is the MATLAB codes that accompany the text
* Provides a thorough discussion of hybrid genetic algorithms
* Features more examples than first edition
* Most significant update to the second edition is the MATLAB codes that accompany the text
* Provides a thorough discussion of hybrid genetic algorithms
* Features more examples than first edition
作者簡介
RANDY L. HAUPT, PhD, is Department Head and Senior Scientist at The Pennsylvania State University Applied Research Laboratory, State College, Pennsylvania.
SUE ELLEN HAUPT, PhD, is a Senior Research Associate in the Computational Mechanics Division of The Pennsylvania State University Applied Research Laboratory, State College, Pennsylvania.
Both Randy and Sue Ellen Haupt are renowned experts in the field of genetic algorithms in engineering and science applications.
SUE ELLEN HAUPT, PhD, is a Senior Research Associate in the Computational Mechanics Division of The Pennsylvania State University Applied Research Laboratory, State College, Pennsylvania.
Both Randy and Sue Ellen Haupt are renowned experts in the field of genetic algorithms in engineering and science applications.
名人/編輯推薦
"Statisticians and computing scientists will like this book very much and will benefit greatly from it." (Journal of Statistical Computation and Simulation, November 2005)
"…an excellent introduction to the world of optimization with its distinct vocabulary and tools." (Journal of the American Statistical Association, September 2005)
"I recommend it highly to anyone who is interested in trying to explore this powerful tool to optimization problems in his or her area of interest." (International Journal of General Systems, June 2005)
"…a nice step-by-step introduction to genetic algorithms (GA) which is specifically designed for practitioners…" (Journal of Intelligent & Fuzzy Systems, Vol. 16, No. 2, 2005)
"This book is very nice to read. It is ideal for some interesting evening study." (Technometrics, May 2005)
"…this book is a worthwhile addition to any course in optimization and/or Gas. It could also serve as a practical guide and template source for researchers…" (Computing Reviews.com, September 30, 2004)
"…an excellent introduction to the world of optimization with its distinct vocabulary and tools." (Journal of the American Statistical Association, September 2005)
"I recommend it highly to anyone who is interested in trying to explore this powerful tool to optimization problems in his or her area of interest." (International Journal of General Systems, June 2005)
"…a nice step-by-step introduction to genetic algorithms (GA) which is specifically designed for practitioners…" (Journal of Intelligent & Fuzzy Systems, Vol. 16, No. 2, 2005)
"This book is very nice to read. It is ideal for some interesting evening study." (Technometrics, May 2005)
"…this book is a worthwhile addition to any course in optimization and/or Gas. It could also serve as a practical guide and template source for researchers…" (Computing Reviews.com, September 30, 2004)
目次
Preface.
Preface to First Edition.
List of Symbols.
1. Introduction to Optimization.
1.1 Finding the Best Solution.
1.2 Minimum-Seeking Algorithms.
1.3 Natural Optimization Methods.
1.4 Biological Optimization: Natural Selection.
1.5 The Genetic Algorithm.
2. The Binary Genetic Algorithm.
2.1 Genetic Algorithms: Natural Selection on a Computer.
2.2 Components of a Binary Genetic Algorithm.
2.3 A Parting Look.
3. The Continuous Genetic Algorithm.
3.1 Components of a Continuous Genetic Algorithm.
3.2 A Parting Look.
4. Basic Applications.
4.1 "Mary Had a Little Lamb".
4.2 Algorithmic Creativity-Genetic Art.
4.3 Word Guess.
4.4 Locating an Emergency Response Unit.
4.5 Antenna Array Design.
4.6 The Evolution of Horses.
4.7 Summary.
5. An Added Level of Sophistication.
5.1 Handling Expensive Cost Functions.
5.2 Multiple Objective Optimization.
5.3 Hybrid GA.
5.4 Gray Codes.
5.5 Gene Size.
5.6 Convergence.
5.7 Alternative Crossovers for Binary GAs.
5.8 Population.
5.9 Mutation.
5.10 Permutation Problems.
5.11 Selling GA Parameters.
5.12 Continuous versus Binary GA.
5.13 Messy Genetic Algorithms.
5.14 Parallel Genetic Algorithms.
6. Advanced Applications.
6.1 Traveling Salespersons Problem.
6.2 Locating an Emergency Response Unit Revisited.
6.3 Decoding a Secret Message.
6.4 Robot Trajectory Planning.
6.5 Stealth Design.
6.6 Building Dynamical Inverse Models-The Linear Case.
6.7 Building Dynamical Inverse Models-The Nonlinear Case.
6.8 Combining GAs with Simulations-Air Pollution Receptor Modeling.
6.9 Combining Methods Neural Nets with GAs.
6.10 Solving High-Order Nonlinear Partial Differential Equations.
7. More Natural Optimization Algorithms.
7.1 Simulated Annealing.
7.2 Particle Swarm Optimization (PSO).
7.3 Ant Colony Optimization (ACO).
7.4 Genetic Programming (GP).
7.5 Cultural Algorithms.
7.6 Evolutionary Strategies.
7.7 The Future of Genetic Algorithms.
Appendix I: Test Functions.
Appendix II: MATLAB Code.
Appendix III. High-Performance Fortran Code.
Glossary.
Index.
Preface to First Edition.
List of Symbols.
1. Introduction to Optimization.
1.1 Finding the Best Solution.
1.2 Minimum-Seeking Algorithms.
1.3 Natural Optimization Methods.
1.4 Biological Optimization: Natural Selection.
1.5 The Genetic Algorithm.
2. The Binary Genetic Algorithm.
2.1 Genetic Algorithms: Natural Selection on a Computer.
2.2 Components of a Binary Genetic Algorithm.
2.3 A Parting Look.
3. The Continuous Genetic Algorithm.
3.1 Components of a Continuous Genetic Algorithm.
3.2 A Parting Look.
4. Basic Applications.
4.1 "Mary Had a Little Lamb".
4.2 Algorithmic Creativity-Genetic Art.
4.3 Word Guess.
4.4 Locating an Emergency Response Unit.
4.5 Antenna Array Design.
4.6 The Evolution of Horses.
4.7 Summary.
5. An Added Level of Sophistication.
5.1 Handling Expensive Cost Functions.
5.2 Multiple Objective Optimization.
5.3 Hybrid GA.
5.4 Gray Codes.
5.5 Gene Size.
5.6 Convergence.
5.7 Alternative Crossovers for Binary GAs.
5.8 Population.
5.9 Mutation.
5.10 Permutation Problems.
5.11 Selling GA Parameters.
5.12 Continuous versus Binary GA.
5.13 Messy Genetic Algorithms.
5.14 Parallel Genetic Algorithms.
6. Advanced Applications.
6.1 Traveling Salespersons Problem.
6.2 Locating an Emergency Response Unit Revisited.
6.3 Decoding a Secret Message.
6.4 Robot Trajectory Planning.
6.5 Stealth Design.
6.6 Building Dynamical Inverse Models-The Linear Case.
6.7 Building Dynamical Inverse Models-The Nonlinear Case.
6.8 Combining GAs with Simulations-Air Pollution Receptor Modeling.
6.9 Combining Methods Neural Nets with GAs.
6.10 Solving High-Order Nonlinear Partial Differential Equations.
7. More Natural Optimization Algorithms.
7.1 Simulated Annealing.
7.2 Particle Swarm Optimization (PSO).
7.3 Ant Colony Optimization (ACO).
7.4 Genetic Programming (GP).
7.5 Cultural Algorithms.
7.6 Evolutionary Strategies.
7.7 The Future of Genetic Algorithms.
Appendix I: Test Functions.
Appendix II: MATLAB Code.
Appendix III. High-Performance Fortran Code.
Glossary.
Index.
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

