Microbial Fuel Cells
商品資訊
ISBN13:9780470239483
出版社:John Wiley & Sons Inc
作者:Logan
出版日:2007/12/19
裝訂/頁數:精裝/216頁
規格:26cm*17.8cm*1.3cm (高/寬/厚)
定價
:NT$ 6847 元優惠價
:
90 折 6162 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
目次
商品簡介
The theory, design, construction, and operation of microbial fuel cells
Microbial fuel cells (MFCs), devices in which bacteria create electrical power by oxidizing simple compounds such as glucose or complex organic matter in wastewater, represent a new and promising approach for generating power. Not only do MFCs clean wastewater, but they also convert organics in these wastewaters into usable energy. Given the world's limited supply of fossil fuels and fossil fuels' impact on climate change, MFC technology's ability to create renewable, carbon-neutral energy has generated tremendous interest around the world.
This timely book is the first dedicated to MFCs. It not only serves as an introduction to the theory underlying the development and functioning of MFCs, it also serves as a manual for ongoing research. In addition, author Bruce Logan, a leading pioneer in MFC research and development, provides practical guidance for the effective design and operation of MFCs based on his own firsthand experience.
This reference covers everything you need to fully understand MFCs, including:
*
Key topics such as voltage and power generation, MFC materials and architecture, mass transfer to bacteria and biofilms, bioreactor design, and fundamentals of electron transfer
*
Applications across a wide variety of scales, from power generation in the laboratory to approaches for using MFCs for wastewater treatment
*
The role of MFCs in the climate change debate
*
Detailed illustrations of bacterial and electrochemical concepts
*
Charts, graphs, and tables summarizing key design and operation variables
*
Practice problems and step-by-step examples
Microbial Fuel Cells, with its easy-to-follow explanations, is recommended as both a textbook for students and professionals interested in entering the field and as a complete reference for more experienced practitioners.
Microbial fuel cells (MFCs), devices in which bacteria create electrical power by oxidizing simple compounds such as glucose or complex organic matter in wastewater, represent a new and promising approach for generating power. Not only do MFCs clean wastewater, but they also convert organics in these wastewaters into usable energy. Given the world's limited supply of fossil fuels and fossil fuels' impact on climate change, MFC technology's ability to create renewable, carbon-neutral energy has generated tremendous interest around the world.
This timely book is the first dedicated to MFCs. It not only serves as an introduction to the theory underlying the development and functioning of MFCs, it also serves as a manual for ongoing research. In addition, author Bruce Logan, a leading pioneer in MFC research and development, provides practical guidance for the effective design and operation of MFCs based on his own firsthand experience.
This reference covers everything you need to fully understand MFCs, including:
*
Key topics such as voltage and power generation, MFC materials and architecture, mass transfer to bacteria and biofilms, bioreactor design, and fundamentals of electron transfer
*
Applications across a wide variety of scales, from power generation in the laboratory to approaches for using MFCs for wastewater treatment
*
The role of MFCs in the climate change debate
*
Detailed illustrations of bacterial and electrochemical concepts
*
Charts, graphs, and tables summarizing key design and operation variables
*
Practice problems and step-by-step examples
Microbial Fuel Cells, with its easy-to-follow explanations, is recommended as both a textbook for students and professionals interested in entering the field and as a complete reference for more experienced practitioners.
作者簡介
Bruce E. Logan, PHD, is the Stan and Flora Kappe Professor of EnvironmentalEngineering at Penn State University, and Director of Penn State's Hydrogen Energy (H2E) Center and the Engineering Environmental Institute. Dr. Logan's areas of expertise include bioenergy (microbial fuel cells and biohydrogen production),bacterial adhesion, colloid transport, and bioremediation. He is the author or coauthor of over 200 refereed publications and books on environmental transport processes, microbial fuel cells, and perchlorate reduction.
目次
Preface.
1. Introduction.
1.1. Energy needs.
1.2. Energy and the challenge of global climate change.
1.3. Bioelectricity generation using a microbial fuel cell --the process of electrogenesis.
1.4. MFCs and energy sustainability of the water infrastructure.
1.5. MFC technologies for wastewater treatment.
1.6. Renewable energy generation using MFCs.
1.7. Other applications of MFC technologies.
2. Exoelectrogens.
2.1. Introduction.
2.2. Mechanisms of electron transfer.
2.3. MFC studies using known exoelectrogenic strains.
2.4. Community analysis.
2.5. MFCs as tools for studying exoelectrogens.
3. Voltage generation.
3.1. Voltage and current.
3.2. Maximum voltages based on thermodynamic relationships.
3.3. Anode potentials and enzyme potentials.
3.4. Role of enzymes versus communities in setting anode potentials.
3.5. Voltage generation by fermentative bacteria?
4. Power generation.
4.1. Calculating power.
4.2. Coulombic and energy efficiency.
4.3. Polarization and power density curves.
4.4. Measuring internal resistance.
4.5. Chemical and electrochemical analysis of reactors.
5. Materials.
5.1. Finding low-cost, highly efficient materials.
5.2. Anode materials.
5.3. Membranes and separators (and chemical transport through them).
5.4. Cathode materials.
5.5. Long term stability of different materials.
6. Architecture.
6.1. General requirements.
6.2. Air-cathode MFCs.
6.3. Aqueous cathodes using dissolved oxygen.
6.4. Two chamber reactors with soluble catholytes or poised potentials.
6.5. Tubular packed bed reactors.
6.6. Stacked MFCs.
6.7. Metal catholytes.
6.8. Biohydrogen MFCs.
6.9. Towards a scaleable MFC architecture.
7. Kinetics and Mass transfer.
7.1. Kinetic or mass transfer models?
7.2. Boundaries on rate constants and bacterial characteristics.
7.3. Maximum power from a monolayer of bacteria.
7.4. Maximum rate of mass transfer to a biofilm.
7.5. Mass transfer per reactor volume.
8. MECs for hydrogen production.
8.1. Principle of operation.
8.2. MEC systems.
8.3. Hydrogen yields.
8.4. Hydrogen recovery.
8.5. Energy recovery.
8.6. Hydrogen losses.
8.7. Differences between the MEC and MFC systems.
9. MFCs for Wastewater Treatment.
9.1. Process trains for WWTPs.
9.2. Replacement of the biological treatment reactor with an MFC.
9.3. Energy balances for WWTPs.
9.4. Implications for reduced sludge generation.
9.5. Nutrient removal.
9.6. Electrogenesis versus methanogensis.
10. Other MFC Technologies.
10.1. Different applications for MFC-based technologies.
10.2. Sediment MFCs.
10.3. Enhanced sediment MFCs.
10.4. Bioremediation using MFC technologies.
11. Fun!
11.1 MFCs for new scientists and inventors.
11.2 Choosing your inoculum and media.
11.3 MFC materials: electrodes and membranes.
11.4 MFC architectures that are easy to build.
11.5 MFC reactors
11.6 Operation and assessment of MFCs.
12. Outlook.
12.1 MFCs yesterday and today.
12.2 Challenges for bringing MFCs to commercialization.
12.3 Accomplishments and outlook.
Notation.
References.
Index.
1. Introduction.
1.1. Energy needs.
1.2. Energy and the challenge of global climate change.
1.3. Bioelectricity generation using a microbial fuel cell --the process of electrogenesis.
1.4. MFCs and energy sustainability of the water infrastructure.
1.5. MFC technologies for wastewater treatment.
1.6. Renewable energy generation using MFCs.
1.7. Other applications of MFC technologies.
2. Exoelectrogens.
2.1. Introduction.
2.2. Mechanisms of electron transfer.
2.3. MFC studies using known exoelectrogenic strains.
2.4. Community analysis.
2.5. MFCs as tools for studying exoelectrogens.
3. Voltage generation.
3.1. Voltage and current.
3.2. Maximum voltages based on thermodynamic relationships.
3.3. Anode potentials and enzyme potentials.
3.4. Role of enzymes versus communities in setting anode potentials.
3.5. Voltage generation by fermentative bacteria?
4. Power generation.
4.1. Calculating power.
4.2. Coulombic and energy efficiency.
4.3. Polarization and power density curves.
4.4. Measuring internal resistance.
4.5. Chemical and electrochemical analysis of reactors.
5. Materials.
5.1. Finding low-cost, highly efficient materials.
5.2. Anode materials.
5.3. Membranes and separators (and chemical transport through them).
5.4. Cathode materials.
5.5. Long term stability of different materials.
6. Architecture.
6.1. General requirements.
6.2. Air-cathode MFCs.
6.3. Aqueous cathodes using dissolved oxygen.
6.4. Two chamber reactors with soluble catholytes or poised potentials.
6.5. Tubular packed bed reactors.
6.6. Stacked MFCs.
6.7. Metal catholytes.
6.8. Biohydrogen MFCs.
6.9. Towards a scaleable MFC architecture.
7. Kinetics and Mass transfer.
7.1. Kinetic or mass transfer models?
7.2. Boundaries on rate constants and bacterial characteristics.
7.3. Maximum power from a monolayer of bacteria.
7.4. Maximum rate of mass transfer to a biofilm.
7.5. Mass transfer per reactor volume.
8. MECs for hydrogen production.
8.1. Principle of operation.
8.2. MEC systems.
8.3. Hydrogen yields.
8.4. Hydrogen recovery.
8.5. Energy recovery.
8.6. Hydrogen losses.
8.7. Differences between the MEC and MFC systems.
9. MFCs for Wastewater Treatment.
9.1. Process trains for WWTPs.
9.2. Replacement of the biological treatment reactor with an MFC.
9.3. Energy balances for WWTPs.
9.4. Implications for reduced sludge generation.
9.5. Nutrient removal.
9.6. Electrogenesis versus methanogensis.
10. Other MFC Technologies.
10.1. Different applications for MFC-based technologies.
10.2. Sediment MFCs.
10.3. Enhanced sediment MFCs.
10.4. Bioremediation using MFC technologies.
11. Fun!
11.1 MFCs for new scientists and inventors.
11.2 Choosing your inoculum and media.
11.3 MFC materials: electrodes and membranes.
11.4 MFC architectures that are easy to build.
11.5 MFC reactors
11.6 Operation and assessment of MFCs.
12. Outlook.
12.1 MFCs yesterday and today.
12.2 Challenges for bringing MFCs to commercialization.
12.3 Accomplishments and outlook.
Notation.
References.
Index.
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

