Introduction To Design And Analysis Of Experiments
商品資訊
ISBN13:9780470412169
出版社:John Wiley & Sons Inc
作者:Cobb
出版日:1998/06/19
裝訂/頁數:平裝/832頁
定價
:NT$ 10032 元優惠價
:
90 折 9029 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
目次
商品簡介
Introduction to Design and Analysis of Experiments explains how to choose sound and suitable design structures and engages students in understanding the interpretive and constructive natures of data analysis and experimental design. Cobb's approach allows students to build a deep understanding of statistical concepts over time as they analyze and design experiments. The field of statistics is presented as a matrix, rather than a hierarchy, of related concepts. Developed over years of classroom use, this text can be used as an introduction to statistics emphasizing experimental design or as an elementary graduate survey course.
Widely praised for its exceptional range of intelligent and creative exercises, and for its large number of examples and data sets, Introduction to Design and Analysis of Experiments-now offered in a convenient paperback format-helps students increase their understanding of the material as they come to see the connections between diverse statistical concepts that arise from the experiments around which the text is built.
*
Concrete visual representation of the factor structure of a design is used instead of heavily subscripted equations, making the text accessible to students who do not have strong algebraic skills
Widely praised for its exceptional range of intelligent and creative exercises, and for its large number of examples and data sets, Introduction to Design and Analysis of Experiments-now offered in a convenient paperback format-helps students increase their understanding of the material as they come to see the connections between diverse statistical concepts that arise from the experiments around which the text is built.
*
Concrete visual representation of the factor structure of a design is used instead of heavily subscripted equations, making the text accessible to students who do not have strong algebraic skills
作者簡介
Whether catapulting gummy bears to demonstrate to his students the fundamentals of experimental design or chairing national committees on undergraduate education in his field, George Cobb is always focused on finding new and better ways to teach statistics. Beginning in the 1980s he was in the vanguard of those who radically altered courses in introductory statistics as computers liberated them to set their students to work with real data. In recent years Cobb has turned to the content and pedagogy of more advanced classes. He has successfully sought ways to engage students from widely diverse academic backgrounds in courses that simultaneously explore mathematics and statistics.
目次
To the Instructor.
Sample Exam Questions.
To the Student.
Acknowledgments.
1. Introduction to Experimental Design.
1. The Challenge of planning a good experiment.
2. Three basic principles and four experimental designs.
3. The factor structure of the four experimental designs.
2. Informal Analysis and Checking Assumptions.
1. What analysis of variance does.
2. The six fisher assumptions.
3. Informal analysis, part 1: parallel dot graphs and choosing a scale.
4. Informal analysis, part 2: interaction graph for the log concentrations.
3. Formal Anova: Decomposing the Data and Measuring Variability, Testing Hypothesis and Estimating True Differences.
1. Decomposing the data.
2. Computing mean squares to measure average variability.
3. Standard deviation = root mean square for residuals.
4. Formal hypothesis testing: are the effects detectable?
5. Confidence intervals: the likely size of true differences.
4. Decisions About the Content of an Experiment.
1. The response.
2. Conditions.
3. Material.
5. Randomization and the Basic Factorial Design.
1. The basic factorial design (“What you do”).
2. Informal analysis.
3. Factor structure (“What you get”).
4. Decomposition and analysis of variance for one-way BF designs.
5. Using a computer [Optional].
6. Algebraic notation for factor structure [Optional].
6. Interaction and the Principle of Factorial Crossing.
1. Factorial crossing and the two-way basic factorial design, or BF[2].
2. Interaction and the interaction graph.
3. Decomposition and ANOVA for the two-way design.
4. Using a computer [Optional].
5. Algebraic notation for the two-way BF design [Optional].
7. The Principle of Blocking.
1. Blocking and the complete block design (CB).
2. Two nuisance factors: the Latin square design(LS).
3. The split plot/repeated measures design (SP/RM).
4. Decomposition and analysis of variance.
5. Scatterplots for data sets with blocks.
6. Using a computer. [Optional].
7. Algebraic notation for the CB, LS And SP/RM Designs.
8. Working with the Four Basic Designs.
1. Comparing and recognizing design structures.
2. Choosing a design structure: deciding about blocking.
3. Informal analysis: examples.
4. Recognizing alternative to ANOVA.
9. Extending the Basic Designs by Factorial Crossing.
1. Extending the BF design: general principles.
2. Three or more crossed factors of interest.
3. Compound within-blocks factors.
4.Graphical methods for 3-factor interactions.
5. Analysis of variance.
10. Decomposing a Data Set.
1. The basic decomposition step and the BF[1] design.
2. Decomposing data from balanced designs.
11. Comparisons, Contrasts, and Confidence Intervals.
1. Comparisons: confidence intervals and tests.
2. Adjustments for multiple comparisons.
3. Between-blocks factors and compound within-blocks factors.
4. Linear estimators and orthogonal contrasts [Optional].
12. The Fisher Assumptions and How to Check Them.
1. Same SDs (s).
2. Independent chance errors (I).
3. The normality assumption (N).
4. Effects are additive (A) and constant (C).
5. Estimating replacement values for outliers.
13. Other Experimental Designs and Models.
1. New factor structures built by crossing and nesting.
2. New uses for old factor structures: fixed versus random effects.
3. Models with mixed interaction effects.
4. Expected mean square and f-ratios.
14. Continuous Carriers: A Visual Approach to Regression, Correlation and Analysis of Covariance.
1. Regression.
2. Balloon summaries and correlation.
3. Analysis of covariance.
15. Sampling Distributions and the Role of the Assumptions.
1. The logic of hypothesis testing.
2. Ways to think about sampling distributions.
3. Four fundamental families of distributions.
4. Sampling distributions for linear estimators.
5. Approximate sampling distributions for f-ratios.
6. Why (and when) are the models reasonable?
Tables.
Data Sources.
Subject Index.
Examples.
Sample Exam Questions.
To the Student.
Acknowledgments.
1. Introduction to Experimental Design.
1. The Challenge of planning a good experiment.
2. Three basic principles and four experimental designs.
3. The factor structure of the four experimental designs.
2. Informal Analysis and Checking Assumptions.
1. What analysis of variance does.
2. The six fisher assumptions.
3. Informal analysis, part 1: parallel dot graphs and choosing a scale.
4. Informal analysis, part 2: interaction graph for the log concentrations.
3. Formal Anova: Decomposing the Data and Measuring Variability, Testing Hypothesis and Estimating True Differences.
1. Decomposing the data.
2. Computing mean squares to measure average variability.
3. Standard deviation = root mean square for residuals.
4. Formal hypothesis testing: are the effects detectable?
5. Confidence intervals: the likely size of true differences.
4. Decisions About the Content of an Experiment.
1. The response.
2. Conditions.
3. Material.
5. Randomization and the Basic Factorial Design.
1. The basic factorial design (“What you do”).
2. Informal analysis.
3. Factor structure (“What you get”).
4. Decomposition and analysis of variance for one-way BF designs.
5. Using a computer [Optional].
6. Algebraic notation for factor structure [Optional].
6. Interaction and the Principle of Factorial Crossing.
1. Factorial crossing and the two-way basic factorial design, or BF[2].
2. Interaction and the interaction graph.
3. Decomposition and ANOVA for the two-way design.
4. Using a computer [Optional].
5. Algebraic notation for the two-way BF design [Optional].
7. The Principle of Blocking.
1. Blocking and the complete block design (CB).
2. Two nuisance factors: the Latin square design(LS).
3. The split plot/repeated measures design (SP/RM).
4. Decomposition and analysis of variance.
5. Scatterplots for data sets with blocks.
6. Using a computer. [Optional].
7. Algebraic notation for the CB, LS And SP/RM Designs.
8. Working with the Four Basic Designs.
1. Comparing and recognizing design structures.
2. Choosing a design structure: deciding about blocking.
3. Informal analysis: examples.
4. Recognizing alternative to ANOVA.
9. Extending the Basic Designs by Factorial Crossing.
1. Extending the BF design: general principles.
2. Three or more crossed factors of interest.
3. Compound within-blocks factors.
4.Graphical methods for 3-factor interactions.
5. Analysis of variance.
10. Decomposing a Data Set.
1. The basic decomposition step and the BF[1] design.
2. Decomposing data from balanced designs.
11. Comparisons, Contrasts, and Confidence Intervals.
1. Comparisons: confidence intervals and tests.
2. Adjustments for multiple comparisons.
3. Between-blocks factors and compound within-blocks factors.
4. Linear estimators and orthogonal contrasts [Optional].
12. The Fisher Assumptions and How to Check Them.
1. Same SDs (s).
2. Independent chance errors (I).
3. The normality assumption (N).
4. Effects are additive (A) and constant (C).
5. Estimating replacement values for outliers.
13. Other Experimental Designs and Models.
1. New factor structures built by crossing and nesting.
2. New uses for old factor structures: fixed versus random effects.
3. Models with mixed interaction effects.
4. Expected mean square and f-ratios.
14. Continuous Carriers: A Visual Approach to Regression, Correlation and Analysis of Covariance.
1. Regression.
2. Balloon summaries and correlation.
3. Analysis of covariance.
15. Sampling Distributions and the Role of the Assumptions.
1. The logic of hypothesis testing.
2. Ways to think about sampling distributions.
3. Four fundamental families of distributions.
4. Sampling distributions for linear estimators.
5. Approximate sampling distributions for f-ratios.
6. Why (and when) are the models reasonable?
Tables.
Data Sources.
Subject Index.
Examples.
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

