Statistical Inference For Fractional Diffusion Processes
商品資訊
ISBN13:9780470665688
出版社:John Wiley & Sons Inc
作者:Rao
出版日:2010/07/16
裝訂/頁數:精裝/280頁
定價
:NT$ 5242 元優惠價
:
90 折 4718 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
目次
商品簡介
Stochastic processes are widely used for model building in the social, physical, engineering and life sciences as well as in financial economics. In model building, statistical inference for stochastic processes is of great importance from both a theoretical and an applications point of view.
This book deals with Fractional Diffusion Processes and statistical inference for such stochastic processes. The main focus of the book is to consider parametric and nonparametric inference problems for fractional diffusion processes when a complete path of the process over a finite interval is observable.
Key features:
* Introduces self-similar processes, fractional Brownian motion and stochastic integration with respect to fractional Brownian motion.
* Provides a comprehensive review of statistical inference for processes driven by fractional Brownian motion for modelling long range dependence.
* Presents a study of parametric and nonparametric inference problems for the fractional diffusion process.
* Discusses the fractional Brownian sheet and infinite dimensional fractional Brownian motion.
* Includes recent results and developments in the area of statistical inference of fractional diffusion processes.
Researchers and students working on the statistics of fractional diffusion processes and applied mathematicians and statisticians involved in stochastic process modelling will benefit from this book.
This book deals with Fractional Diffusion Processes and statistical inference for such stochastic processes. The main focus of the book is to consider parametric and nonparametric inference problems for fractional diffusion processes when a complete path of the process over a finite interval is observable.
Key features:
* Introduces self-similar processes, fractional Brownian motion and stochastic integration with respect to fractional Brownian motion.
* Provides a comprehensive review of statistical inference for processes driven by fractional Brownian motion for modelling long range dependence.
* Presents a study of parametric and nonparametric inference problems for the fractional diffusion process.
* Discusses the fractional Brownian sheet and infinite dimensional fractional Brownian motion.
* Includes recent results and developments in the area of statistical inference of fractional diffusion processes.
Researchers and students working on the statistics of fractional diffusion processes and applied mathematicians and statisticians involved in stochastic process modelling will benefit from this book.
作者簡介
B.L.S. Prakasa Rao, Department of Mathematics and Statistics, University of Hyderabad, India. Professor Rao is one of the world's foremost researchers in this complex area of probability theory.
目次
Preface
1 Fractional Brownian Motion and Related Processes
1.1 Introduction
1.2 Self-similar processes
1.3 Fractional Brownian motion
1.4 Stochastic differential equations driven by fBm
1.5 Fractional Ornstein-Uhlenbeck type process
1.6 Mixed fractional Brownian motion
1.7 Donsker type approximation for fBm with Hurst index H > 12
1.8 Simulation of fractional Brownian motion
1.9 Remarks on application of modelling by fBm in mathematical finance
1.10 Path wise integration with respect to fBm
2 Parametric Estimation for Fractional Diffusion Processes
2.1 Introduction
2.2 Stochastic differential equations and local asymptotic normality
2.3 Parameter estimation for linear SDE
2.4 Maximum likelihood estimation
2.5 Bayes estimation
2.6 Berry-Esseen type bound for MLE
2.7 _-upper and lower functions for MLE
2.8 Instrumental variable estimation
3 Parametric Estimation for Fractional Ornstein-Uhlenbeck Type Process
3.1 Introduction
3.2 Preliminaries
3.3 Maximum likelihood estimation
3.4 Bayes estimation
3.5 Probabilities of large deviations of MLE and BE
3.6 Minimum L1-norm estimation
4 Sequential Inference for Some Processes Driven by Fractional Brownian
Motion
4.1 Introduction
4.2 Sequential maximum likelihood estimation
4.3 Sequential testing for simple hypothesis
5 Nonparametric Inference for Processes Driven by Fractional Brownian
Motion
5.1 Introduction
5.2 Identification for linear stochastic systems
5.3 Nonparametric estimation of trend
6 Parametric Inference for Some SDE’s Driven by Processes Related to
FBM
6.1 Introduction
6.2 Estimation of the the translation of a process driven by a fBm
6.3 Parametric inference for SDE with delay governed by a fBm
6.4 Parametric estimation for linear system of SDE driven by fBm’s with different
Hurst indices
6.5 Parametric estimation for SDE driven by mixed fBm
6.6 Alternate approach for estimation in models driven by fBm
6.7 Maximum likelihood estimation under misspecified model
7 Parametric Estimation for Processes Driven by Fractional Brownian Sheet
7.1 Introduction
7.2 Parametric estimation for linear SDE driven by a fractional Brownian sheet
8 Parametric Estimation for Processes Driven by Infinite Dimensional Fractional
Brownian Motion
8.1 Introduction
8.2 Parametric estimation for SPDE driven by infinite dimensional fBm
8.3 Parametric estimation for stochastic parabolic equations driven by infinite
dimensional fBm
9 Estimation of Self-Similarity Index
9.1 Introduction
9.2 Estimation of the Hurst index H when H is a constant and 12 < H < 1 for fBm
9.3 Estimation of scaling exponent function H(.) for locally self-similar processes
10 Filtering and Prediction for Linear Systems Driven by Fractional Brownian
Motion
10.1 Introduction
10.2 Prediction of fractional Brownian motion
10.3 Filtering in a simple linear system driven by a fBm
10.4 General approach for filtering for linear systems driven by fBm
References
Index
1 Fractional Brownian Motion and Related Processes
1.1 Introduction
1.2 Self-similar processes
1.3 Fractional Brownian motion
1.4 Stochastic differential equations driven by fBm
1.5 Fractional Ornstein-Uhlenbeck type process
1.6 Mixed fractional Brownian motion
1.7 Donsker type approximation for fBm with Hurst index H > 12
1.8 Simulation of fractional Brownian motion
1.9 Remarks on application of modelling by fBm in mathematical finance
1.10 Path wise integration with respect to fBm
2 Parametric Estimation for Fractional Diffusion Processes
2.1 Introduction
2.2 Stochastic differential equations and local asymptotic normality
2.3 Parameter estimation for linear SDE
2.4 Maximum likelihood estimation
2.5 Bayes estimation
2.6 Berry-Esseen type bound for MLE
2.7 _-upper and lower functions for MLE
2.8 Instrumental variable estimation
3 Parametric Estimation for Fractional Ornstein-Uhlenbeck Type Process
3.1 Introduction
3.2 Preliminaries
3.3 Maximum likelihood estimation
3.4 Bayes estimation
3.5 Probabilities of large deviations of MLE and BE
3.6 Minimum L1-norm estimation
4 Sequential Inference for Some Processes Driven by Fractional Brownian
Motion
4.1 Introduction
4.2 Sequential maximum likelihood estimation
4.3 Sequential testing for simple hypothesis
5 Nonparametric Inference for Processes Driven by Fractional Brownian
Motion
5.1 Introduction
5.2 Identification for linear stochastic systems
5.3 Nonparametric estimation of trend
6 Parametric Inference for Some SDE’s Driven by Processes Related to
FBM
6.1 Introduction
6.2 Estimation of the the translation of a process driven by a fBm
6.3 Parametric inference for SDE with delay governed by a fBm
6.4 Parametric estimation for linear system of SDE driven by fBm’s with different
Hurst indices
6.5 Parametric estimation for SDE driven by mixed fBm
6.6 Alternate approach for estimation in models driven by fBm
6.7 Maximum likelihood estimation under misspecified model
7 Parametric Estimation for Processes Driven by Fractional Brownian Sheet
7.1 Introduction
7.2 Parametric estimation for linear SDE driven by a fractional Brownian sheet
8 Parametric Estimation for Processes Driven by Infinite Dimensional Fractional
Brownian Motion
8.1 Introduction
8.2 Parametric estimation for SPDE driven by infinite dimensional fBm
8.3 Parametric estimation for stochastic parabolic equations driven by infinite
dimensional fBm
9 Estimation of Self-Similarity Index
9.1 Introduction
9.2 Estimation of the Hurst index H when H is a constant and 12 < H < 1 for fBm
9.3 Estimation of scaling exponent function H(.) for locally self-similar processes
10 Filtering and Prediction for Linear Systems Driven by Fractional Brownian
Motion
10.1 Introduction
10.2 Prediction of fractional Brownian motion
10.3 Filtering in a simple linear system driven by a fBm
10.4 General approach for filtering for linear systems driven by fBm
References
Index
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

