Nonparametric Regression Methods For Longitudinal Data Analysis: Mixed-Effects Modeling Approaches
商品資訊
ISBN13:9780471483502
出版社:John Wiley & Sons Inc
作者:Wu
出版日:2006/04/05
裝訂/頁數:精裝/400頁
定價
:NT$ 6572 元優惠價
:
90 折 5915 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
名人/編輯推薦
目次
商品簡介
Incorporates mixed-effects modeling techniques for more powerful and efficient methods
This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented.
With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques.
The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis.
Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices.
With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.
This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented.
With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques.
The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis.
Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices.
With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.
作者簡介
HULIN WU, PHD, is Professor of Biostatistics in the School of Medicine and Dentistry at the University of Rochester in the Departments of Medicine; Community and Preventative Medicine; and Biostatistics and Computational Biology. His research interests include longi-tudinal data, HIV/AIDS modeling, biomedical informatics, and clinical trials.
JIN-TING ZHANG, PHD, is Assistant Professor in the Department of Statistics and Applied Probability at the National University of Singapore. His research interests include nonparametric regression and density estimation, nonparametric mixed-effects modeling, functional data analysis, and longitudinal data analysis, among others.
JIN-TING ZHANG, PHD, is Assistant Professor in the Department of Statistics and Applied Probability at the National University of Singapore. His research interests include nonparametric regression and density estimation, nonparametric mixed-effects modeling, functional data analysis, and longitudinal data analysis, among others.
名人/編輯推薦
"The authors should be congratulated for their contribution…a nice addition to the personal collection of any statistician." (Journal of the American Statistical Association, June 2007)
"...can serve as a textbook for both undergraduate and graduate students. Also it will help researchers in this area…[because of its] comprehensive coverage of the materials." (Mathematical Reviews, 2007b)
"…an excellent survey of many of the nonparametric regression techniques used in longitudinal studies…highly recommended." (CHOICE, October 2006)
"...can serve as a textbook for both undergraduate and graduate students. Also it will help researchers in this area…[because of its] comprehensive coverage of the materials." (Mathematical Reviews, 2007b)
"…an excellent survey of many of the nonparametric regression techniques used in longitudinal studies…highly recommended." (CHOICE, October 2006)
目次
Preface.
Acronyms.
1. Introduction.
2. Parametric Mixed-Effects Models.
3. Nonparametric Regression Smoothers.
4. Local Polynomial Methods.
5. Regression Spline Methods.
6. Smoothing Splines Methods.
7. Penalized Spline Methods.
8. Semiparametric Models.
9. Time-Varying Coefficient Models.
10. Discrete Longitudinal Data.
References.
Index.
Acronyms.
1. Introduction.
2. Parametric Mixed-Effects Models.
3. Nonparametric Regression Smoothers.
4. Local Polynomial Methods.
5. Regression Spline Methods.
6. Smoothing Splines Methods.
7. Penalized Spline Methods.
8. Semiparametric Models.
9. Time-Varying Coefficient Models.
10. Discrete Longitudinal Data.
References.
Index.
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

