Organic Thin Film Transistor Integration - A Hybrid Approach
商品資訊
ISBN13:9783527409594
出版社:John Wiley & Sons Inc
作者:Li
出版日:2011/04/06
裝訂/頁數:精裝/270頁
定價
:NT$ 5660 元優惠價
:
90 折 5094 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
目次
商品簡介
Research on organic electronics (or plastic electronics) is driven by the need to create systems that are lightweight, unbreakable, and mechanically flexible. With the remarkable improvement in the performance of organic semiconductor materials during the past few decades, organic electronics appeal to innovative, practical, and broad-impact applications requiring large-area coverage, mechanical flexibility, low-temperature processing, and low cost. Thus, organic electronics appeal to a broad range of electronic devices and products including transistors, diodes, sensors, solar cells, lighting, displays, and electronic identification and tracking devices A number of commercial opportunities have been identified for organic thin film transistors (OTFTs), ranging from flexible displays, electronic paper, radio-frequency identification (RFID) tags, smart cards, to low-cost disposable electronic products, and more are continually being invented as the technology matures. The potential applications for ?plastic electronics? are huge but several technological hurdles must be overcome. In many of these applications, transistor serves as a fundamental building block to implement the necessary electronic functionality. Hence, research in organic thin film transistors (OTFTs) or organic field effect transistors (OFETs) is eminently pertinent to the development and realization of organic electronics. This book presents a comprehensive investigation of the production and application of a variety of polymer based transistor devices and circuits. It begins with a detailed overview of Organic Thin Film Transistors (OTFTs) and discusses the various possible fabrication methods reported so far. This is followed by two major sections on the choice, optimization and implementation of the gate dielectric material to be used. Details of the effects of processing on the efficiency of the contacts are then provided. The book concludes with a chapter on the integration of such devices to produce a variety of OTFT based circuits and systems. The key objective is to examine strategies to exploit existing materials and techniques to advance OTFT technology in device performance, device manufacture, and device integration. Finally, the collective knowledge from these investigations facilitates the integration of OTFTs into organic circuits, which is expected to contribute to the development of new generation of all-organic displays for communication devices and other pertinent applications. Overall, a major outcome of this work is that it provides an economical means for organic transistor and circuit integration, by enabling the use of a well-established PECVD infrastructure, while not compromising the performance of electronics. The techniques established here are not limited to use in OTFTs only; the organic semiconductor and SiNx combination can be used in other device structures (e.g., sensors, diodes, photovoltaics). Furthermore, the approach and strategy used for interface optimization can be extended to the development of other materials systems.
作者簡介
Flora M. Li is a Research Associate at the Centre of Advanced Photonics and Electronics (CAPE) at the University of Cambridge, UK. She received her Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Canada in 2008. She was a Visiting Scientist at Xerox Research Centre of Canada (XRCC) from 2005-2008. Her research interests are in the field of nano- and thin-film technology for applications in large area and flexible electronics, including displays, sensors, photovoltaics, circuits and systems. She has co-authored a book entitled CCD Image Sensors in Deep-Ultraviolet (2005), and published in various scientific journals.
Arokia Nathan holds the Sumitomo/STS Chair of Nanotechnology at the London Centre for Nanotechnology, University College London, UK. He is also the CTO of Ignis Innovation Inc., Waterloo, Canada, a company he founded to commercialize technology on thin film silicon backplanes on rigid and flexible substrates for large area electronics. He received his Ph.D. in Electrical Engineering from the University of Alberta, Canada, in 1988. In 1987, he joined LSI Logic Corp., Santa Clara, CA, USA where he worked on advanced multi-chip packaging techniques. Subsequently, he was at the Institute of Quantum Electronics, ETH Zurich, Switzerland. In 1989, he joined the Department of Electrical and Computer Engineering, University of Waterloo. In 1995, he was a Visiting Professor at the Physical Electronics Laboratory, ETH Zurich, Switzerland. In 1997 he held the DALSA/NSERC Industrial Research Chair in sensor technology, and was a recipient of the 2001 Natural Sciences and Engineering Research Council E.W.R. Steacie Fellowship. In 2004 he was awarded the Canada Research Chair in nano-scale flexible circuits. In 2005/2006, he was a Visiting Professor in the Engineering Department, University of Cambridge, U.K. In 2006, he joined the London Centre for Nanotechnology and is a recipient of the Royal Society Wolfson Research Merit Award. He has published extensively in the field of sensor technology, CAD, and thin film transistor electronics, and has over 40 patents filed/awarded. He is the co-author of two books, Microtransducer CAD and CCD Image Sensors in Deep-Ultraviolet, published in 1999 and 2005, respectively, and serves on technical committees and editorial boards at various capacities.
Arokia Nathan holds the Sumitomo/STS Chair of Nanotechnology at the London Centre for Nanotechnology, University College London, UK. He is also the CTO of Ignis Innovation Inc., Waterloo, Canada, a company he founded to commercialize technology on thin film silicon backplanes on rigid and flexible substrates for large area electronics. He received his Ph.D. in Electrical Engineering from the University of Alberta, Canada, in 1988. In 1987, he joined LSI Logic Corp., Santa Clara, CA, USA where he worked on advanced multi-chip packaging techniques. Subsequently, he was at the Institute of Quantum Electronics, ETH Zurich, Switzerland. In 1989, he joined the Department of Electrical and Computer Engineering, University of Waterloo. In 1995, he was a Visiting Professor at the Physical Electronics Laboratory, ETH Zurich, Switzerland. In 1997 he held the DALSA/NSERC Industrial Research Chair in sensor technology, and was a recipient of the 2001 Natural Sciences and Engineering Research Council E.W.R. Steacie Fellowship. In 2004 he was awarded the Canada Research Chair in nano-scale flexible circuits. In 2005/2006, he was a Visiting Professor in the Engineering Department, University of Cambridge, U.K. In 2006, he joined the London Centre for Nanotechnology and is a recipient of the Royal Society Wolfson Research Merit Award. He has published extensively in the field of sensor technology, CAD, and thin film transistor electronics, and has over 40 patents filed/awarded. He is the co-author of two books, Microtransducer CAD and CCD Image Sensors in Deep-Ultraviolet, published in 1999 and 2005, respectively, and serves on technical committees and editorial boards at various capacities.
目次
1. Introduction
1.1 Organic Electronics: History and Market
2. Organic Thin Film Transistors (OTFT): Overview
2.1 Organic Semiconductor Overview
2.2 OTFT Operation and Characteristics
2.3 OTFT Device Architecture
2.4 OTFT Device Material Selection
2.5 Summary
3. OTFT Integration Strategies
3.1 Technological Challenge inOTFT Integration
3.2 Overview of Processing and Fabrication Techniques
3.3 OTFT Fabrication Schemes
3.4 Summary
4. Gate Dielectric by Plasma Enhanced Chemical Vapor Deposition (PECVD)
4.1 Overview of Gate Dielectrics
4.2 Experimental Details and Characterization Methods
4.3 Material Characterization of PECVD SiNx Films
4.4 Electrical Characterization of OTFTs with PECVD Gate Dielectrics
4.5 Summary
5. Dielectric Interface Engineering
5.1 Background
5.2 Experimental Details
5.3 Impact of Dieletric Surface Treatments
5.4 Impact of Oxygen Plasma Exposure Conditions
5.5 Summary
6. Contact Interface Engineering
6.1 Background
6.2 Experimental Details
6.3 Impact of Contact Surface Treatment by Thiol SAM
6.4 Impact of Execution Sequence of Surface Treatment
6.5 Summary
7. OTFT Circuits and Systems
7.1 OTFT Requirements for Circuit Applications
7.2 Applications
7.3 Circuit Demonstration
7.4 Summary, Contributions, and Outlook
8. Outlook and Future Challenges
1.1 Organic Electronics: History and Market
2. Organic Thin Film Transistors (OTFT): Overview
2.1 Organic Semiconductor Overview
2.2 OTFT Operation and Characteristics
2.3 OTFT Device Architecture
2.4 OTFT Device Material Selection
2.5 Summary
3. OTFT Integration Strategies
3.1 Technological Challenge inOTFT Integration
3.2 Overview of Processing and Fabrication Techniques
3.3 OTFT Fabrication Schemes
3.4 Summary
4. Gate Dielectric by Plasma Enhanced Chemical Vapor Deposition (PECVD)
4.1 Overview of Gate Dielectrics
4.2 Experimental Details and Characterization Methods
4.3 Material Characterization of PECVD SiNx Films
4.4 Electrical Characterization of OTFTs with PECVD Gate Dielectrics
4.5 Summary
5. Dielectric Interface Engineering
5.1 Background
5.2 Experimental Details
5.3 Impact of Dieletric Surface Treatments
5.4 Impact of Oxygen Plasma Exposure Conditions
5.5 Summary
6. Contact Interface Engineering
6.1 Background
6.2 Experimental Details
6.3 Impact of Contact Surface Treatment by Thiol SAM
6.4 Impact of Execution Sequence of Surface Treatment
6.5 Summary
7. OTFT Circuits and Systems
7.1 OTFT Requirements for Circuit Applications
7.2 Applications
7.3 Circuit Demonstration
7.4 Summary, Contributions, and Outlook
8. Outlook and Future Challenges
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

