商品簡介
三位矽谷專家,用零基礎就能懂的語言
將最核心的科技趨勢濃縮一冊,讓你
像賈伯斯一樣思考,秒懂科技及商業動態!
Google搜索是怎麼運作的?
Spotify如何確定推薦給你的歌曲?
為什麼華盛頓郵報同一篇文章都有兩個版本的標題?
Facebook如何決定哪些內容會出現在你的動態消息?
臉書為什麼要以十億美元買下IG?
這些問題,你知道答案嗎?
科技新知每天洪水般湧來,你是能理解吸收、跟上趨勢,在自身的工作與生活中善用,或是看不懂、想不通,平白讓職涯發展與機會溜走?
終於等到一本書,即使沒有資通訊基礎、沒有程式背景,卻想讀懂科技知識、跟上商業發展趨勢、理解工作與生活上的科技動態……就是這本。
本書由任職於Google、微軟、臉書的三位產品經理合撰,他們平常的工作就是向沒有背景的投資者、合作者、客戶,以平易近人的語言與譬喻(也就是大白話)來解說「最新的科技該如何應用在商業和生活」,身為行內人,又練就一身把資訊知識講清楚的能力:
先講「是什麼」→用零基礎就可以讀懂的文字,說明科技趨勢(例如大數據和機器學習)的內容和影響。
再講「為什麼」→為什麼科技公司會想到利用這些科技、背後的商業理由,幫你拆解推動科技趨勢的力量,培養你跟科技人一樣的思考的能力。
三位專家累積了最多人想知道的66個問題,寫成本書,讓讀者無痛學習重要的科技趨勢、流行語和相關的商業應用和策略概念。你可以學到:
★每天都在用的Google搜尋功能,是怎麼做到的?
Google不是在你搜尋時,就去網路上的每個頁面,而是將網頁的資訊存在資料庫(資訊的表格,如Excel),然後使用演算法(就是下指令)讀取資料庫,決定要呈現哪些內容。
★亞馬遜(網飛)為什麼那麼懂你,會推薦最想買的東西(想看的影片)給你?
答案其中之一就是「協同過濾」,根據你與數以百萬計的其他人的購買記錄中,配對出跟你喜歡一樣東西的人,他們買過的商品你卻還沒下單,自然一推薦就中!
★為什麼臉書免費就能使用,他們卻能賺億萬美元?
簡單的答案是「定向廣告」。因為使用者在臉書的應用程式與網站上進行相當多活動,暴露了自身的喜好。然後藉由這些資料定向推送給使用者,從廣告商那裡獲利。所以矽谷有句名言:「如果你不付費給一個產品,你就是產品。」
★臉書為什麼要以十億美元買下IG?
因為IG的照片分享體驗是行動裝置使用者的最愛――介面清楚、以照片為整個應用程式的中心(還有好用的濾鏡)。臉書得趕緊買下IG以免被擊敗。
★微信如何成為中國官方應用程式?
微信本來是通訊軟體,但是後來添加了許多功能,幾乎是一個作業系統――包括買電影票、醫院掛號、叫車,不需要額外安裝應用程式。微信可以控制整個使用者體驗,影響著九億個中國人。
★自駕車為是怎麼駕駛的?
1. 偵測器可以精準的建立一個周遭環境的3D模型,計算最可能的行動路線2. 「機器學習」:藉由觀察到的汽車可能碰到的獨特情境,模式,預測可能發生的事情(例如自行車騎士伸出左手,自駕車會預測他有90%可能性會左轉,而開始減速避開。
◎本書特色
1. 一本書解答數位公民、商業人士和不肯落伍的人,不能不懂的66個科技趨勢入門問題
每個人、每一天都會遇到的科技問題,一本書就解答;你不需要唸過資訊科學、不必會寫程式,就看得懂。
2. 科技趨勢往哪裡走?三位矽谷內行人告訴你!
由Google、微軟、臉書三產品經理合撰,由基礎談起,以內行人角度解說你不能不知道的科技問題和背後的商業策略概念。不掉書袋,以說明、比喻、圖解方式介紹,平易近人,好讀好吸收。
3. 涵蓋面向多元、內容親切度高,繁忙的現代人都學得快、用得上!
本書重要的科技趨勢皆有介紹,又不落入太多技術讓人無法理解的窠臼。理解科技產業動態以精進自我的職場人;想增進與科技人合作效率的設計、行銷、業務;要訂定未來策略的高階管理者;甚至是科技人,想提升溝通力及商業力,本書的大白話解說及豐富案例,人人都能得切身、實用的指引與啟發。
◎專業推薦
摩根.布朗(Morgan Brown,《成長駭客攻略》〔Hacking Growth〕共同作者)
簡妙如(中正大學傳播學系教授、新媒體傳播及流行音樂研究者)
林冠明(日商優必達機器學習研發總監、前學思科技知識總監)
鄭國威(泛科知識公司知識長)
Lynn(《寫點科普》部落格主)
齊立文(《經理人月刊》總編輯)
「對於想學習驅動科技產業的重要趨勢、關鍵概念和商業策略的人而言,本書是入門指南!」
――摩根.布朗(Morgan Brown,《成長駭客攻略》〔Hacking Growth〕共同作者)
作者簡介
尼爾・梅達Neel Mehta:在Google擔任專案經理,曾在微軟、可汗學院,以及美國人口調查局工作。在人口調查局工作的時候發起了在聯邦政府內的第一個全額獎學金的實習計畫。他從哈佛大學以優秀學位畢業。
姓名:帕爾・德托賈Parth Detroja
帕爾・德托賈Parth Detroja:是臉書的產品經理。曾在微軟、亞馬遜與IBM擔任產品經理與行銷人員。他從康乃爾大學以最優秀學位畢業。
姓名:阿迪亞・加傑Aditya Agashe
阿迪亞・加傑Aditya Agashe:在微軟擔任產品經理,之前是美好應用程式公司的創辦人與執行長。他從康乃爾大學以優秀學位畢業。
姓名:劉榮樺
英國里茲大學藝術博士,目前為國立中正大學傳播學系助理教授。專長為區塊鏈、混合實境,大數據與新聞探勘。
名人/編輯推薦
【推薦序1】提升科技識讀力的友善讀本
齊立文/《經理人月刊》總編輯
進入2020年的第一個月,Google的母公司Alphabet在1月16日,加入了蘋果(Apple)、亞馬遜(Amazon)與微軟(Microsoft)的陣營,成為美國史上第四家市值突破一兆美元的企業(亞馬遜曾於2018年市值破一兆美元,目前約9,245億美元)。
你有沒有想過,在每天的尋常日子裡,食衣住行育樂各行各業裡,曾經有來自哪些產業的公司,在全球的市值排行榜上名列前茅,像是石油、汽車、零售、百貨、金融、科技?又曾幾何時,前面提到的四家兆元俱樂部成員,以及包括臉書(Facebook)、阿里巴巴、騰訊在內的科技大廠,幾乎已經成為全球企業市值排行前十名的固定成員?
就算你從沒想過,但是你其實正在、甚至可以說已經參與了這樣一個商業地貌的成形。每個人天天都活在科技中,每家公司未來都是科技業。
不知不覺的app人生
幾乎從張開眼睛的那一刻起,手機鬧鈴叫醒你,起床第一個碰觸的物件,就是手機。出門前,你要看天氣、查公車到站時間、行車路線;出門後,路上要聽音樂(音頻)、聊天、追劇、看社群媒體。
仔細想想,在這短短一小時間,你沒離開過、也離不開手機、網路和app。如果再將時間拉長到一天24小時,你工作、開會、買東西、吃東西、去運動,甚至躺平睡著沒辦法滑手機時,你可能都還用了app在監控自己的睡眠品質。
你還記得、又能想像iPhone其實是在2007年1月才問世的嗎?就在這短短十幾年間,人類的生活與習慣就起了這麼大的變化,「新常態」很快就成了常態,「手機錢包鑰匙」成了現代人出門前的自我提醒口訣,說不定很快地就只剩下手機了。
當然,討論科技對社會方方面面的衝擊,由來已久,一點都不新鮮,總是隨著技術的迭代更新掀起一番熱議,也總是會帶來正面和負面兼具的作用力。
不過,近三十年來伴隨著網際網路普及而興起一連串科技趨勢的演變,其滲透力和影響力的範圍之廣,已經不限於一時一地、一個產業或一個國家,而是動輒是全球範疇,而且速度之快就在轉瞬之間。
更值得關注的是,當我們嘗試展望未來人類的生活樣貌時,不管你想到的是人工智慧(AI)、雲端、大數據、自駕車、機器人、無人機、虛擬實境(VR)、擴增實境(AR)……,前面提到的那幾家科技巨擘,早已經展開步局,他們不只已經在「預測」你現在會買什麼、吃什麼、看什麼,在未來也將如影隨形,甚至「預先塑造」你的生活世界。
FAAMG如影隨形的未來
影響人類生活的科技和企業有很多,為什麼要一直點名Facebook、Amazon、Apple、Microsoft、Google這幾家大公司?
除了他們是目前商業影響力最大的企業,最主要的原因是,在閱讀這本書的過程中,你會更清楚地發現,這些巨人們不但已經運用他們的終端產品和服務,在全世界吸引幾億、甚是數十億的用戶,許許多多你日常使用的app,即使表面上看似與他們獨立、不相干,像是追劇的Netflix、叫車的Uber、聽音樂的Spotify、訂民宿的Airbnb,實際上這些公司賴以順暢營運的基礎建設,也都與這些公司大有關聯。
檢視本書三位作者的工作經歷,他們正好都待過FAAMG這幾家公司,由他們來解說對於人類的現在與未來影響深遠的諸多科技,確實可以帶來不一樣的洞察。
首先,他們對於科技趨勢的what層面,有比較細緻的處理。有別於字典式或名詞解釋式的生硬說明,作者們顯然站在讀者或科技使用的角度來思考,用提問的方式(例如「Spotify如何推薦歌曲給你?」「Airbnb如何賺錢?」「新節目開播,Netflix如何處理暴增的觀眾?」),帶領讀者既了解趨勢現況,又能夠解讀背後的技術原理。
其次,透過每一個問題(why),作者們更帶領讀者進一步省思企業決策的背後盤算(how),以及對於社會的長遠衝擊和意涵(例如「為什麼微軟要收購LinkedIn?」「亞馬遜如何將商品在半小時內送達?」「這些公司擁有這麼多資料,到底是好事還是壞事?」)。
最後、也最難得的是,書中的每一個技術名詞,都用了非常淺白的文字、貼近生活的例子做類比,我在閱讀過程中,幾乎不曾因為看不懂科技行家的專業術語,而產生「自己笨」的念頭,或要請他們「說中文」「講人話」。我想這也是在提高「科技識讀力」上很重要的一道門檻。
【推薦序2】像賈伯斯一樣思考!秒懂現在及未來的科技、商業與影響
簡妙如/中正大學傳播學系教授、新媒體傳播及流行音樂研究者
別再說自己是電腦白痴,或科技與你無關這種話了!當然,現在很少人好意思這樣笑話自己。畢竟每天滑手機、使用社群媒體,或是LINE免費通話,線上購物,卡片嗶一聲就能行動支付。各種科技應用的全面商業化,已是我們每日生活的現在進行式。
本書三位作者將21世紀影響我們深遠的科技世界產品及其商業策略,以基本知識(軟體如何開發、網際網路怎麼運作、應用程式app商業模式)、基本組成(大數據、雲端運算、安全性以及相類似的內容)及未來趨勢(商業策略、新興市場、科技政策與科技的下一步)三大部分,作了鉅細靡遺、卻又言簡意賅的介紹。三位作者都擔任過不同科技產業領域的產品經理,很能由使用者的角度,淺顯易懂地說明這些賦予科技世界力量的軟體、硬體等核心技術是什麼,以及說明其為什麼這樣做、這麼設計的商業理由。
不是理工人、不是相關領域工作者,完全不妨礙我們一樣可擁有商業科技如何運作的基本素養。只要是你╱妳是這些科技應用服務的使用者、你就已是這些科技產品及軟體,不斷在分析瞄準的對象,已被這些科技所形塑。
比如我愛用的Spotify,一向被稱讚為比你更了解你的音樂品味。看了書中的介紹,我了解了Spotify的核心技術,了解它著名的「每週探索」(Discover Weekly)推薦歌單是怎麼來的。Spotify聘用很多音樂專家,再以「協同過濾」演算法,結合一部分你輸入的歌單,以及一部分與你品味檔案類似的人的歌單,就能神奇地為你製作個人化推薦曲目;你雖沒聽過、但卻符合你的喜好。此外,我也知道了Spotify為何要投資在推薦歌單上。原來,雇用工程師建置這樣的推薦引擎,成本很高。但因為每個音樂串流平台都擁有龐大的音樂曲庫,只要有錢去買音樂授權,各平台都差不多,但如果有厲害的協同過濾推薦,你就能與眾不同。因為個人化的推薦令用戶黏著度更高,一旦用戶生產了許多個人播放清單,他們也不會輕易改用其他家音樂服務,這就是高轉換成本(switching cost)的創造。因此,Spotify就是以這樣的強力推薦系統,個人化的播放清單,拉開它與競爭對手的差距,這是很厲害的商業策略。
看了這本書的內容,大致都能在上述兩個面向獲得了解:不只是科技,而且還是這些科技背後的生意算盤、商業策略。非常像原英文書名《Swipe to Unlock》所形容:立即解鎖、秒懂科技及其商業策略。
而看了這本書,我們也會有滿實用的雙重助益。一方面,了解演算法、大數據、雲端等原理,我們會有關於科技世界如何運作的洞察力,如作者們建議,這也是同時獲得一些工具,讓我們可以開始了解、分析與形塑科技,甚至用來在科技公司尋找一份非工程師的工作職位,像賈伯斯一樣。但我們也可以變身為更有科技、數位素養的公民,讓自己去關心未來的工作、生活如何被科技及其背後的商業利益所攪亂或操控。比如書中最後一部分談的科技與社會的關係,談被遺忘權、開放資料的政治與政策、談機器人是否奪走工作;談亞馬遜如何由貨運及倉儲基礎設施,造就它令對手們畏懼的超強競爭力,因為它,不只是一家科技公司。這些議題,都需要更多具有數位素養的公民能參與議論,才更能促使政府規畫適當的政策。
我很喜歡這本書的前言對賈伯斯那段話的引用:「擁抱它、改變它、改進它,在上面加上你的印記」,還有那則註解:「順道一提,他並沒有為蘋果公司寫過任何程式碼」。這應該能鼓舞很多人,一如你我,讓這個已越來越由科技所打造的世界,有更多我們的情感、理智與人性可投入的印記。
書摘/試閱
無論何時在谷歌上進行搜尋,搜尋引擎都會爬梳超過三十兆個網際網路上的頁面,然後找到前十筆符合您搜尋的結果。有92%的時間你會點選在第一頁當中的某個結果(也就是前十筆結果當中)。從三十兆的網頁中找到前十筆相當困難――就如同在紐約市尋找掉在地上的一分錢。然而谷歌用專家的方式在平均半秒的時間內找到結果。但是,它是如何做到的?
實際上谷歌並不是你每次搜尋的時候,就前往網際網路上的每個頁面。谷歌實際上是將網頁的資訊存在資料庫(資訊的表格,如Excel),然後使用演算法讀取資料庫,決定要呈現哪些內容。演算法只是一連串的指令――人類也許有個「演算法」用於製作一個花生醬與果醬的雙醬三明治,如同谷歌有演算法用於尋找你在搜尋列中輸入的內容。
※爬取
谷歌的演算,是從建立資料庫用於儲存網際網路上每個頁面的資料開始的。谷歌使用稱為蜘蛛的程式,用於「爬取」(crawl)網頁,直到找到所有頁面(或者至少是谷歌覺得是所有的頁面)。蜘蛛先從少數的頁面著手,再將這些頁面新增到谷歌的網頁列表,稱為「索引」(index)。然後蜘蛛從這些頁面的向外的連結開始,找到新的一組頁面,也加到索引中。下一步,他們跟著這些頁面上的連結繼續同個步驟,直到谷歌無法找到其他頁面。
爬取的動作不斷在進行,谷歌一直在新增頁面到他們的索引,或者是當頁面有變更時,谷歌也會更新索引。索引的檔案規模非常巨大,超過一億GB。假如你想把它裝進容量為1TB的外接硬碟,會需要十萬個外接硬碟――如果將它堆疊起來,大概會有一英里高。
※文字搜尋
當你在谷歌進行搜尋,谷歌會抓取查詢內容(你輸入在搜尋框的文字),然後比對它的索引,尋找最相關的頁面。
谷歌如何做到這件事?最簡單的方法是尋找特定關鍵字出現的地方,有點類似按下Ctrl+F或者Cmd+F搜尋一個巨大的Word文件。確實,這是90年代搜尋引擎運作的方式:就是在其索引當中尋找符合你搜尋的文字,並且顯示最相關的頁面,這個「相關」的屬性稱為關鍵字密度。
這個方法很容易被操弄。假如你輸入士力架糖果棒(Snickers),想像你會看到snickers.com排在第一位。但是如果搜尋引擎只是計算士力架這個單字在頁面上出現的次數,任何一個人可以製作隨機的網頁,頁面上只出現「士力架士力架士力架士力架」(如此一直下去),然後就會被排到搜尋結果的首位。很明顯,這並不是非常有用的方式。
※佩吉排序
捨棄關鍵字密度,谷歌核心的創新技術是一個稱為佩吉排序(PageRank)的演算法,這是由谷歌的創辦人賴瑞・佩吉(Larry Page)與 謝爾蓋・布林(Sergey Brin)在1998年為了博士論文所撰寫的。佩吉與布林注意到,一個網頁的重要性可以從哪些重要的網頁連結到該網頁來進行評估。這就如同在一個派對當中,你知道某個人受歡迎,是因為他被其他受歡迎的人包圍。佩吉排序給每個網頁一個分數,這個分數是由其他連至該頁面的其他網頁的佩吉分數所計算出來的。(那些其他網頁的分數,是由其他連結至他們的網頁分數所計算出來的,持續這樣計算其他網頁的分數;這是由線性代數所計算。)
例如,假如我們製作一個關於亞伯拉罕・林肯的新網頁,一開始會有很低的佩吉排序分數。如果有一個沒沒無聞的部落格連結到我們的網頁,網頁的分數會稍微上升。佩吉排序關心的是連至我們網頁的連結的品質,而不是數量。即使好幾十個沒沒無聞部落格連至我們的頁面,我們網頁的分數也不會提升太高。但是假如《紐約時報》的一篇文章(或許擁有很高的分數)連結到我們的頁面,我們頁面的分數就會大爆發。
一旦谷歌在其索引當中找到符合你搜尋的文字內容,谷歌就會用多個準則進行排序,包含了佩吉排序。谷歌也有許多其他準則:例如頁面更新的時間,以及忽略看起來像是垃圾的頁面(如之前我們所提到的寫滿「士力架士力架士力架士力架士力架士力架」的網站)。同時谷歌也會考慮到你所在的位置(如果您在美國搜尋「足球」,它會回傳國家美式足球聯盟,如果你在英格蘭,它則會回傳英格蘭足球超级聯賽),以及其他種種準則。
※操弄谷歌
然而,佩吉排序存在許多漏洞。很多像是濫用關鍵字密度的垃圾頁面(就如同「士力架士力架士力架士力架士力架士力架」),現在也開始有 「連結農場」(link farm),或者是頁面上有許多不相關的連結。網站擁有者可以付錢給連結農場,將連結加到連結農場的網站,藉此人為操作來使佩吉排序暴增。然後,谷歌已經很熟練地抓到與忽略這些連結農場。
但是,仍然有幾個主流的方式可以玩弄谷歌。一個稱為搜尋引擎最佳化(search engine optimization, 縮寫為SEO)的產業興起,幫助網站擁有者破解谷歌的搜尋演算法,確保他們的網頁能出現在谷歌搜尋的前幾筆結果中。搜尋引擎最佳化的最基本方式是讓更多的網頁連結到你的頁面。搜尋引擎最佳化包含了相當多的技巧,例如在你頁面名稱與標題選對正確的關鍵字,或者是讓你網站的頁面彼此相連。
然而,谷歌的搜尋演算法一直在變;谷歌在一年內有超過五百次的小升級。偶爾會有一些大升級,在每次升級之後,搜尋引擎最佳化的專家會試著找到改善方法來領先他人。例如,谷歌在2018年更改演算法,偏好那些在行動裝置上顯示內容較快的網站,這使得專家們建議網站的擁有者利用谷歌稱為加速行動頁面(Accelerated Mobile Paghes,縮寫為AMP)的工具製作過的頁面用以取得較好的搜尋排名。
【摘錄2】主題02:Spotify如何推薦歌曲給你
每個週一早晨,Spotify會送給聽眾三十首歌的播放清單,這些歌曲很神奇地符合聽眾們的喜好。這個播放清單稱為「每週探索」(Discover Weekly),也成為熱門話題。在2015年6月發行的六個月內,「每週探索」被發送超過十億七千萬次。Spotify為什麼能這麼了解兩億個使用者的喜好呢?
Spotify的確有雇用音樂專家,手動製作播放清單,但是他們沒有辦法為兩億個使用者製作這個清單。Spotify是採用演算法,每週執行以製作歌單。
「每週探索」的演算法是先查看兩項基本資訊。第一,它會先看使用者喜愛到會加入到音樂庫或者是播放清單的所有歌曲。這個演算法甚至聰明到可以知道,使用者是否在播放的前三十秒就已經跳過該首歌曲,這代表使用者可能不喜歡這首歌曲。第二,演算法會看其他人所製作的所有播放清單,同時假設每個播放清單都有主題關聯,比如使用者可能會有「跑步」或者是「披頭四即興演奏」播放清單。
當Spotify有了這些資料,就利用這兩個方式找到使用者可能喜歡的歌曲。第一個方法是比較上述的兩個資料集(dataset),找到符合使用者喜好的新歌。例如,有個使用者的播放清單有八首歌曲,而當中的七首有在你的音樂庫,他們判斷你可能喜歡這類型的歌曲,所以「每週探索」就推薦那首不在你音樂庫的歌曲。
這種方式稱為「協同過濾」,這也被亞馬遜所採用,其根據你與數以百萬計的使用者的購買紀錄,推薦建議商品給你。網飛的電影建議、Youtube的影片建議,和臉書的朋友建議都是採用協同過濾。
隨著服務獲得更多使用者,協同過濾變得越來越有用――在這種情況下,當Spotify使用者越多,就越容易找到與特定品味相符的人,因此也更容易提出建議。 但是,隨著使用者數量的增長,這些演算法也會變慢且計算量龐大。
第二個方法是將使用者的播放清單視為個人的「品味檔案」(taste profile),根據個人所聽且喜歡的歌曲,Spotify會以不同類別(如獨立搖滾或者是R&B)以及更細微的類別(如室內流行樂與新美國音樂)推薦使用者相同類別的音樂。這仍然是根據過往聽過的音樂模式,只是不同形式的推薦。
※為什麼要投資在音樂推薦上?
然而,雇用工程師建置這樣的推薦引擎是很昂貴的,Spotify的工程師一年薪水要幾十萬美金,所以,為什麼Spotify要這麼做?
第一點,一個強力的推薦系統是一個賣點,讓Spotify顯得比其他競爭對手突出,如蘋果音樂(Apple Music)。那是因為有龐大的音樂庫是不夠的,以商業語彙來說,音樂是一個商品――任何歌曲在Spotify或者是蘋果音樂,或者是其他類似的地方聽起來都一樣――並且只要有錢的人就可以去購買音樂的授權,建立一個巨大的音樂庫。
所以,如果所有的音樂串流服務都能夠有效率地擁有相同的音樂,Spotify需要有與其他競爭對手不同的地方。而Spotify的推薦系統也確實達到這個目標――被認為比蘋果音樂更好。
而且,當有更多的使用者,協同過濾的表現會更好,Spotify(已經有了很多使用者)持續維持領先。
第二個理由是個人化的推薦使得使用者的服務黏著度更高。越常使用Spotify,演算法越了解你的品味,也因此更能推薦適合的音樂。所以假如你常常使用Spotify,你的推薦結果將會相當好,也因此你不會想改用蘋果音樂,因為蘋果音樂一點也不了解你的偏好。所以這個高「轉換成本」(switching cost),減少你想改用其他類似應用程式的可能性。(更一般地來說,任何存放在應用嘗試的個人資料,例如製作Spotify的播放清單,將會提高轉換成本,因為必須在新的應用程式中重新建立資料。)
簡而言之,個人化的播放清單對聽音樂的人來說相當重要,這也是Spotify厲害的商業策略,難怪越來越多的應用程式提供個人化的推薦內容。
主題書展
更多書展本週66折
您曾經瀏覽過的商品
購物須知
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。