Statistics for Health Data Science: An Organic Approach
商品資訊
ISBN13:9783030598914
出版社:Springer Nature
作者:Ruth Etzioni
出版日:2022/01/19
裝訂:平裝
規格:23.4cm*15.6cm*1.3cm (高/寬/厚)
定價
:NT$ 4639 元若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
商品簡介
Chapter 1: Introduction: Data science, statistics, and big data in healthExamples of the "new" health services, delivery and outcomes data including surveys, claims and EMR's. Examples of the big questions that can be addressed. Data Science versus statistics, big databases versus big data, prediction versus inference. Characteristics of health care utilization data. What does health care cost? Different ways of quantifying health care costs. Characteristics of health cost data.
Chapter 2: The new health care data: surveys, medical claims and EMR'sSurveys, Medical Claims, EMR's: characteristics and challenges. Examples of studies based on the different types of data resources. Strengths and weaknesses of each. Tips for quality control. Possibly: An overview of issues in processing unstructured data and linking databases
Chapter 3: Basic statistical background useful for analysis of health care costs and utilizationThe generic inference problem. Some useful statistical distributions. Conditional and marginal probability. Least squares and maximum likelihood. Hypothesis testing and discussion about p-values. Statistical power.
Chapter 4: Conceptual models for health care utilization and costs Anderson-Newman model, variants and extensions.
Chapter 5: Linear regression for observational studiesConfounding, Mediation and Moderation. Difference in difference models. Impact of violating OLS assumptions
Chapter 6: Nonlinear models 1: Binary outcomes and choice models Probit models. Logistic models and conditional logistic models. Multinomial logit regression models and ordered logit models. The method of recycled predictions.
Chapter 7: Nonlinear models 2: Models for count outcomes Log-linear models for count outcomes. Poisson and negative binomial regression. Models for individual and population counts. Zero-inflated and zero-truncated models. Generalized Linear Models.
Chapter 8: Risk adjustmentConstructing comorbidity and risk adjustment variables using claims data. Computing Q/E ratios. Using O/E ratios for profiling facilities.
Chapter 9: Models for skewed health costsLog-normal models for skewed costs. Duan's method of smearing for lognormal data. The difference between modeling the log of Y (lognormal models for costs) and log(E(Y)) log-linear models for count outcomes. Gamma models as an alternative to lognormal models for cost data. Cross-validation for model selection.
Chapter 10: Two-part models for costs and countsZero-inflated Poisson and negative binomial models. Two part models (logit-normal or logit-gamma) for cost outcomes. Cross-validation for model selection.
Chapter 11: The bootstrap: General principles and use in variance estimation for two-part modelsDoes the normality assumption matter? Using the bootstrap to examine the properties of regression coefficient estimates in large sample. Different types of bootstrap confidence intervals. Extending the bootstrap to compute the variance of the marginal effects in the two-part model.
Chapter 12: Survey data analysisExamples of Health Surveys. Complexity of Health Surveys. Simple Random Sampling. Stratified Sampling. Post-Stratification. Other methods for dealing with missing data. Cluster Sampling. Sample Weights: when to use or not to use? Ratio estimation, linearization and variance estimation
Chapter 13: Machine learning methods for predictionPredictive analytics versus statistical inference. Simple classification and discrimination algorithm
Chapter 2: The new health care data: surveys, medical claims and EMR'sSurveys, Medical Claims, EMR's: characteristics and challenges. Examples of studies based on the different types of data resources. Strengths and weaknesses of each. Tips for quality control. Possibly: An overview of issues in processing unstructured data and linking databases
Chapter 3: Basic statistical background useful for analysis of health care costs and utilizationThe generic inference problem. Some useful statistical distributions. Conditional and marginal probability. Least squares and maximum likelihood. Hypothesis testing and discussion about p-values. Statistical power.
Chapter 4: Conceptual models for health care utilization and costs Anderson-Newman model, variants and extensions.
Chapter 5: Linear regression for observational studiesConfounding, Mediation and Moderation. Difference in difference models. Impact of violating OLS assumptions
Chapter 6: Nonlinear models 1: Binary outcomes and choice models Probit models. Logistic models and conditional logistic models. Multinomial logit regression models and ordered logit models. The method of recycled predictions.
Chapter 7: Nonlinear models 2: Models for count outcomes Log-linear models for count outcomes. Poisson and negative binomial regression. Models for individual and population counts. Zero-inflated and zero-truncated models. Generalized Linear Models.
Chapter 8: Risk adjustmentConstructing comorbidity and risk adjustment variables using claims data. Computing Q/E ratios. Using O/E ratios for profiling facilities.
Chapter 9: Models for skewed health costsLog-normal models for skewed costs. Duan's method of smearing for lognormal data. The difference between modeling the log of Y (lognormal models for costs) and log(E(Y)) log-linear models for count outcomes. Gamma models as an alternative to lognormal models for cost data. Cross-validation for model selection.
Chapter 10: Two-part models for costs and countsZero-inflated Poisson and negative binomial models. Two part models (logit-normal or logit-gamma) for cost outcomes. Cross-validation for model selection.
Chapter 11: The bootstrap: General principles and use in variance estimation for two-part modelsDoes the normality assumption matter? Using the bootstrap to examine the properties of regression coefficient estimates in large sample. Different types of bootstrap confidence intervals. Extending the bootstrap to compute the variance of the marginal effects in the two-part model.
Chapter 12: Survey data analysisExamples of Health Surveys. Complexity of Health Surveys. Simple Random Sampling. Stratified Sampling. Post-Stratification. Other methods for dealing with missing data. Cluster Sampling. Sample Weights: when to use or not to use? Ratio estimation, linearization and variance estimation
Chapter 13: Machine learning methods for predictionPredictive analytics versus statistical inference. Simple classification and discrimination algorithm
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

