Optics And Photonics - An Introduction 2E
商品資訊
ISBN13:9780470017845
出版社:John Wiley & Sons Inc
作者:Smith
出版日:2007/04/20
裝訂/頁數:平裝/520頁
商品簡介
Specific changes for this edition include:
- New material on modern optics and photonics
- Rearrangement of chapters to give a logical progression, comprising groups of chapters on geometric optics, wave optics and photonics
- Many more worked examples and problems
- Substantial revisions to chapters on Holography, Lasers and the Interaction of Light with Matter
目次
1. LIGHT AS WAVES, RAYS AND PHOTONS.
The nature of light.
Waves and rays.
Total internal reflection.
The light wave.
Electromagnetic waves.
The electromagnetic spectrum.
Stimulated emission: the laser. Photons and material particles.
2. GEOMETRIC OPTICS.
The thin prism: the ray approach and the wavefront approach.
The lens as an assembly of prisms.
Refraction at a spherical surface.
Two surfaces; the simple lens.
Imaging in spherical mirrors.
General properties of imaging systems.
Separated thin lenses in air.
Ray tracing by matrices.
Locating the cardinal points: position of a nodal point, focal point, principal point, focal length, the other cardinal points.
Perfect imaging.
Perfect imaging of surfaces.
Ray and wave aberrations.
Wave aberration on-axis – spherical aberration.
Off-axis aberrations.
The influence of aperture stops.
The correction of chromatic aberration.
Achromatism in separated lens systems.
Adaptive optics.
3. OPTICAL INSTRUMENTS.
The human eye.
The simple lens magnifier.
The compound microscope.
The confocal scanning microscope.
Resolving power; conventional and near-field microscopes.
The telescope.
Advantages of the various types of telescope.
Binoculars.
The camera.
Illumination in optical instruments.
4. PERIODIC AND NON-PERIODIC WAVES.
Simple harmonic waves.
Positive and negative frequencies.
Standing waves. Beats between oscillators.
Similarities between beats and standing wave patterns.
Standing waves at a reflector.
The Doppler effect.
Doppler radar.
Astronomical aberration.
Fourier series.
Modulated waves: Fourier transforms.
Modulation by a non-periodic function.
Convolution.
Delta and grating functions.
Autocorrelation and the power spectrum.
Wave groups.
An angular spread of plane waves.
5. ELECTROMAGNETIC WAVES.
Maxwell’s equations.
Transverse waves.
Reflection and transmission: Fresnel’s equations.
Total internal reflection: evanescent waves.
Energy flow.
Photon momentum and radiation pressure.
Blackbody radiation.
6. FIBRE AND WAVEGUIDE OPTICS.
The light pipe.
Guided waves.
The slab dielectric guide.
Evanescent fields in fibre optics.
Cylindrical fibres and waveguides.
Numerical aperture. Materials for optical fibres.
Dispersion in optical fibres.
Dispersion compensation.
Modulation and communications.
Fibre optical components.
Hole-array light guide; photonic crystal fibres.
Optical fibre sensors.
Fabrication of optical fibres.
7. POLARIZATION OF LIGHT.
Polarization of transverse waves.
Analysis of elliptically polarized waves.
Polarizers.
Liquid crystal displays.
Birefringence in anisotropic media.
Birefringent polarizers.
Generalizing Snell’s law for anisotropic materials.
Quarter- and half-wave plates.
Optical activity.
Formal descriptions of polarization.
Induced birefringence.
8. INTERFERENCE.
Interference.
Young’s experiment.
Newton’s rings.
Interference effects with a plane-parallel plate.
Thin films.
Michelson’s spectral interferometer.
Multiple beam interference.
The Fabry–Pérot interferometer.
Interference filters.
9. INTERFEROMETRY: LENGTH, ANGLE AND ROTATION.
The Rayleigh interferometer.
Wedge fringes and end gauges.
The Twyman and Green interferometer.
The standard of length.
The Michelson–Morley experiment.
Detecting gravitational waves by interferometry.
The Sagnac ring interferometer.
Optical fibres in interferometers.
The ring laser gyroscope.
Measuring angular width.
The effect of slit width.
Source size and coherence.
Michelson’s stellar interferometer.
Very long baseline interferometry.
The intensity interferometer.
10. DIFFRACTION.
Diffraction at a single slit.
The general aperture.
Rectangular and circular apertures: uniformly illuminated single slit: two infinitesimally narrow slits: two slits with finite width: uniformly illuminated rectangular aperture: uniformly illuminated circular aperture.
Fraunhofer and Fresnel diffraction.
Shadow edges – Fresnel diffraction at a straight edge.
Diffraction of cylindrical wavefronts.
Fresnel diffraction by slits and strip obstacles.
Spherical waves and circular apertures: half-period zones.
Fresnel–Kirchhoff diffraction theory.
Babinet’s principle.
The field at the edge of an aperture.
11. THE DIFFRACTION GRATING AND ITS APPLICATIONS.
The diffraction grating.
Diffraction pattern of the grating.
The effect of slit width and shape.
Fourier transforms in grating theory.
Missing orders and blazed gratings.
Making gratings.
Concave gratings.
Blazed, echellette, echelle and echelon gratings.
Radio antenna arrays: end-fire array shooting equally in both directions: end-fire array shooting in only one direction: the broadside array: two-dimensional broadside arrays.
X-ray diffraction with a ruled grating.
Diffraction by a crystal lattice.
The Talbot effect.
12. SPECTRA AND SPECTROMETRY.
Spectral lines.
Linewidth and lineshape.
The prism spectrometer.
The grating spectrometer.
Resolution and resolving power.
Resolving power: the prism spectrometer.
Resolving power: grating spectrometers.
The Fabry–Pe´rot spectrometer.
Twin beam spectrometry; Fourier transform spectrometry.
Irradiance fluctuation, or photon-counting spectrometry.
Scattered laser light.
13. COHERENCE AND CORRELATION.
Temporal and spatial coherence.
Correlation as a measure of coherence.
Temporal coherence of a wavetrain.
Fluctuations in irradiance.
The van Cittert–Zernike theorem.
Autocorrelation and coherence.
Two-dimensional angular resolution.
Irradiance fluctuations: the intensity interferometer.
Spatial filtering.
14. HOLOGRAPHY.
Reconstructing a plane wave.
Gabor’s original method.
Basic holography analysis.
Holographic recording: off-axis holography.
Aspect effects.
Types of hologram.
Holography in colour.
The rainbow hologram.
Holography of moving objects.
Holographic interferometry.
Holographic optical elements.
Holographic data storage.
15. LASERS.
Stimulated emission.
Pumping: the energy source.
Absorption and emission of radiation.
Laser gain.
Population inversion.
Threshold gain coefficient.
Laser resonators.
Beam irradiance and divergence.
Examples of important laser systems: gas lasers, solid state lasers, liquid lasers.
16. LASER LIGHT.
Laser linewidth.
Spatial coherence: laser speckle.
Temporal coherence and coherence length.
Laser pulse duration: Q-switching, mode-locking.
Laser radiance.
Focusing laser light.
Photon momentum: optical tweezers and trapping; optical tweezers; laser cooling.
Non-linear optics.
17. SEMICONDUCTORS AND SEMICONDUCTOR LASERS.
Semiconductors.
Semiconductor diodes.
LEDs and semiconductor lasers; heterojunction lasers.
Semiconductor laser cavities.
Wavelengths and tuning of semiconductor lasers.
Modulation.
Organic semiconductor LEDs and lasers.
18. SOURCES OF LIGHT.
Classical radiation processes: radiation from an accelerated charge; the Hertzian dipole.
Free–free radiation.
Cyclotron and synchrotron radiation.
Free electron lasers.
Cerenkov radiation.
The formation of spectral lines: the Bohr model; nuclear mass; quantum mechanics; angular momentum and electron spin.
Light from the Sun and Stars.
Thermal sources.
Fluorescent lights. Luminescence sources.
Electroluminescence.
19. INTERACTION OF LIGHT WITH MATTER.
The classical resonator.
Rayleigh scattering.
Polarization and refractive index in dielectrics.
Free electrons.
Faraday rotation in a plasma.
Resonant atoms in gases.
The refractive index of dense gases, liquids and solids.
Anisotropic refraction.
Brillouin scattering.
Raman scattering.
Thomson and Compton scattering by electrons.
A summary of scattering processes.
20. THE DETECTION OF LIGHT.
Photoemissive detectors.
Semiconductor detectors.
Semiconductor junction photodiodes.
Imaging detectors. Noise in photodetectors. Image intensifiers.
Photography.
Thermal detectors.
21. OPTICS AND PHOTONICS IN NATURE.
Light and colour in the open air.
The development of eyes.
Corneal and lens focusing.
Compound eyes.
Reflection optics.
Fluorescence and photonics in a butterfly.
Biological light detectors.
Photosynthesis.
Appendix 1: Answers to Selected Problems.
Appendix 2: Radiometry and Photometry.
Appendix 3: Refractive Indices of Common Materials.
Appendix 4: Spectral Lineshapes and Linewidths.
Appendix 5: Further Reading.
INDEX.
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

