Evolutionary Algorithms In Engineering & Computer Science
商品資訊
ISBN13:9780471999027
出版社:John Wiley & Sons Inc
作者:Miettinen
出版日:1999/04/27
裝訂/頁數:平裝/500頁
定價
:NT$ 15698 元優惠價
:
90 折 14128 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
目次
商品簡介
Evolutionary Algorithms in Engineering and Computer Science Edited by K. Miettinen, University of Jyv�skyl�, Finland M. M. M�kel�, University of Jyv�skyl�, Finland P. Neittaanm�ki, University of Jyv�skyl�, Finland J. P�riaux, Dassault Aviation, France What is Evolutionary Computing? Based on the genetic message encoded in DNA, and digitalized algorithms inspired by the Darwinian framework of evolution by natural selection, Evolutionary Computing is one of the most important information technologies of our times. Evolutionary algorithms encompass all adaptive and computational models of natural evolutionary systems - genetic algorithms, evolution strategies, evolutionary programming and genetic programming. In addition, they work well in the search for global solutions to optimization problems, allowing the production of optimization software that is robust and easy to implement. Furthermore, these algorithms can easily be hybridized with traditional optimization techniques. This book presents state-of-the-art lectures delivered by international academic and industrial experts in the field of evolutionary computing. It bridges artificial intelligence and scientific computing with a particular emphasis on real-life problems encountered in application-oriented sectors, such as aerospace, electronics, telecommunications, energy and economics. This rapidly growing field, with its deep understanding and assesssment of complex problems in current practice, provides an effective, modern engineering tool. This book will therefore be of significant interest and value to all postgraduates, research scientists and practitioners facing complex optimization problems.
目次
METHODOLOGICAL ASPECTS.
Using Genetic Algorithms for Optimization: Technology Transfer in Action (J. Haataja).
An Introduction to Evolutionary Computation and Some Applications (D. Fogel).
Evolutionary Computation: Recent Developments and Open Issues (K. De Jong).
Some Recent Important Foundational Results in Evolutionary Computation (D. Fogel). Evolutionary Algorithms for Engineering Applications (Z. Michalewicz, et al.).
Embedded Path Tracing and Neighbourhood Search Techniques (C. Reeves T. Yamada). Parallel and Distributed Evolutionary Algorithms (M. Tomassini).
Evolutionary Multi-Criterion Optimization (K. Deb).
ACO Algorithms for the Traveling Salesman Problem (T. St�tzle M. Dorigo).
Genetic Programming: Turing's Third Way to Achieve Machine Intelligence (J. Koza, et al.).
Automatic Synthesis of the Topology and Sizing for Analog Electrical Circuits Using Genetic Programming (F. Bennett, et al.).
APPLICATION-ORIENTED APPROACHES.
Multidisciplinary Hybrid Constrained GA Optimization (G. Dulikravich, et al.).
Genetic Algorithm as a Tool for Solving Electrical Engineering Problems (M. Rudnicki, et al.).
Genetic Algorithms in Shape Optimization: Finite and Boundary Element Applications (M. Cerrolaza W. Annicchiarico).
Genetic Algorithms and Fractals (E. Lutton).
Three Evolutionary Approaches to Clustering (H. Luchian).
INDUSTRIAL APPLICATIONS.
Evolutionary Algorithms Applied to Academic and Industrial Test Cases (T. B�ck, et al.).
Optimization of an Active Noise Control System Inside an Aircraft, Based on the Simultaneous Optimal Positioning of Microphones and Speakers, with the Use of a Genetic Algorithm (Z. Diamantis, et al.).
Generator Scheduling in Power Systems by Genetic Algorithm and Expert System (B. Galvan, et al.).
Efficient Partitioning Methods for 3-D Unstructured Grids Using Genetic Algorithms (A. Giotis, et al.).
Genetic Algorithms in Shape Optimization of a Paper Machine Headbox (J. H�m�l�inen, et al.).
A Parallel Genetic Algorithm for Multi-Objective Optimization in Computational Fluid Dynamics (N. Marco, et al.).
Application of a Multi Objective Genetic Algorithm and a Neural Network to the Optimisation of Foundry Processes (G. Meneghetti, et al.).
Circuit Partitioning Using Evolution Algorithms (J. Montiel-Nelson, et al.).
Using Genetic Algorithms for Optimization: Technology Transfer in Action (J. Haataja).
An Introduction to Evolutionary Computation and Some Applications (D. Fogel).
Evolutionary Computation: Recent Developments and Open Issues (K. De Jong).
Some Recent Important Foundational Results in Evolutionary Computation (D. Fogel). Evolutionary Algorithms for Engineering Applications (Z. Michalewicz, et al.).
Embedded Path Tracing and Neighbourhood Search Techniques (C. Reeves T. Yamada). Parallel and Distributed Evolutionary Algorithms (M. Tomassini).
Evolutionary Multi-Criterion Optimization (K. Deb).
ACO Algorithms for the Traveling Salesman Problem (T. St�tzle M. Dorigo).
Genetic Programming: Turing's Third Way to Achieve Machine Intelligence (J. Koza, et al.).
Automatic Synthesis of the Topology and Sizing for Analog Electrical Circuits Using Genetic Programming (F. Bennett, et al.).
APPLICATION-ORIENTED APPROACHES.
Multidisciplinary Hybrid Constrained GA Optimization (G. Dulikravich, et al.).
Genetic Algorithm as a Tool for Solving Electrical Engineering Problems (M. Rudnicki, et al.).
Genetic Algorithms in Shape Optimization: Finite and Boundary Element Applications (M. Cerrolaza W. Annicchiarico).
Genetic Algorithms and Fractals (E. Lutton).
Three Evolutionary Approaches to Clustering (H. Luchian).
INDUSTRIAL APPLICATIONS.
Evolutionary Algorithms Applied to Academic and Industrial Test Cases (T. B�ck, et al.).
Optimization of an Active Noise Control System Inside an Aircraft, Based on the Simultaneous Optimal Positioning of Microphones and Speakers, with the Use of a Genetic Algorithm (Z. Diamantis, et al.).
Generator Scheduling in Power Systems by Genetic Algorithm and Expert System (B. Galvan, et al.).
Efficient Partitioning Methods for 3-D Unstructured Grids Using Genetic Algorithms (A. Giotis, et al.).
Genetic Algorithms in Shape Optimization of a Paper Machine Headbox (J. H�m�l�inen, et al.).
A Parallel Genetic Algorithm for Multi-Objective Optimization in Computational Fluid Dynamics (N. Marco, et al.).
Application of a Multi Objective Genetic Algorithm and a Neural Network to the Optimisation of Foundry Processes (G. Meneghetti, et al.).
Circuit Partitioning Using Evolution Algorithms (J. Montiel-Nelson, et al.).
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

