Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
商品資訊
ISBN13:9781804610541
出版社:PACKT PUB
作者:Vijaya Kumar Suda
出版日:2024/01/31
裝訂:平裝
規格:23.5cm*19.1cm*2.1cm (高/寬/厚)
商品簡介
Take your data preparation, machine learning, and GenAI skills to the next level by learning a range of Python algorithms and tools for data labeling
Key Features:
- Generate labels for regression in scenarios with limited training data
- Apply generative AI and large language models (LLMs) to explore and label text data
- Leverage Python libraries for image, video, and audio data analysis and data labeling
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
Data labeling is the invisible hand that guides the power of artificial intelligence and machine learning. In today's data-driven world, mastering data labeling is not just an advantage, it's a necessity. Data Labeling in Machine Learning with Python empowers you to unearth value from raw data, create intelligent systems, and influence the course of technological evolution.
With this book, you'll discover the art of employing summary statistics, weak supervision, programmatic rules, and heuristics to assign labels to unlabeled training data programmatically. As you progress, you'll be able to enhance your datasets by mastering the intricacies of semi-supervised learning and data augmentation. Venturing further into the data landscape, you'll immerse yourself in the annotation of image, video, and audio data, harnessing the power of Python libraries such as seaborn, matplotlib, cv2, librosa, openai, and langchain. With hands-on guidance and practical examples, you'll gain proficiency in annotating diverse data types effectively.
By the end of this book, you'll have the practical expertise to programmatically label diverse data types and enhance datasets, unlocking the full potential of your data.
What You Will Learn:
- Excel in exploratory data analysis (EDA) for tabular, text, audio, video, and image data
- Understand how to use Python libraries to apply rules to label raw data
- Discover data augmentation techniques for adding classification labels
- Leverage K-means clustering to classify unsupervised data
- Explore how hybrid supervised learning is applied to add labels for classification
- Master text data classification with generative AI
- Detect objects and classify images with OpenCV and YOLO
- Uncover a range of techniques and resources for data annotation
Who this book is for:
This book is for machine learning engineers, data scientists, and data engineers who want to learn data labeling methods and algorithms for model training. Data enthusiasts and Python developers will be able to use this book to learn data exploration and annotation using Python libraries. Basic Python knowledge is beneficial but not necessary to get started.
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

