Business Intelligence - Data Mining And Optimization For Decision Making
商品資訊
ISBN13:9780470511381
出版社:John Wiley & Sons Inc
作者:Vercellis
出版日:2009/03/20
裝訂/頁數:精裝/448頁
定價
:NT$ 10398 元優惠價
:
90 折 9358 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
目次
商品簡介
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made.
Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence.
This book:
Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence.
Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation.
Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies.
Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions.
This book is aimed at postgraduate students following data analysis and data mining courses.
Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence.
This book:
Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence.
Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation.
Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies.
Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions.
This book is aimed at postgraduate students following data analysis and data mining courses.
Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
作者簡介
Carlo Vercellis - School of Management, Politecnico di Milano, Italy
As well as teaching courses in Operations Research and Business Intelligence, Professor Vercellis is director of the research group MOLD (Mathematical Modeling, Optimization, Learning from Data). He has written four book in Italian, contributed to numerous other books, and has had many papers published in a variety of international journals.
As well as teaching courses in Operations Research and Business Intelligence, Professor Vercellis is director of the research group MOLD (Mathematical Modeling, Optimization, Learning from Data). He has written four book in Italian, contributed to numerous other books, and has had many papers published in a variety of international journals.
目次
Preface.
I Components of the decision-making process.
1 Business intelligence.
1.1 Effective and timely decisions.
1.2 Data, information and knowledge.
1.3 The role of mathematical models.
1.4 Business intelligence architectures.
1.5 Ethics and business intelligence.
1.6 Notes and readings.
2 Decision support systems.
2.1 Definition of system.
2.2 Representation of the decision-making process.
2.3 Evolution of information systems.
2.4 Definition of decision support system.
2.5 Development of a decision support system.
2.6 Notes and readings.
3 Data warehousing.
3.1 Definition of data warehouse.
3.2 Data warehouse architecture.
3.2.1 ETL tools.
3.3 Cubes and multidimensional analysis.
3.4 Notes and readings.
II Mathematical models and methods.
4 Mathematical models for decision making.
4.1 Structure of mathematical models.
4.2 Development of a model.
4.3 Classes of models.
4.4 Notes and readings.
5 Data mining.
5.1 Definition of data mining.
5.2 Representation of input data.
5.3 Data mining process.
5.4 Analysis methodologies.
5.5 Notes and readings.
6 Data preparation.
6.1 Data validation.
6.2 Data transformation.
6.3 Data reduction.
7 Data exploration.
7.1 Univariate analysis.
7.2 Bivariate analysis.
7.3 Multivariate analysis.
7.4 Notes and readings.
8 Regression.
8.1 Structure of regression models.
8.2 Simple linear regression.
8.3 Multiple linear regression.
8.4 Validation of regression models.
8.5 Selection of predictive variables.
8.6 Notes and readings.
9 Time series.
9.1 Definition of time series.
9.2 Evaluating time series models.
9.3 Analysis of the components of time series.
9.4 Exponential smoothing models.
9.5 Autoregressive models.
9.6 Combination of predictive models.
9.7 The forecasting process.
9.8 Notes and readings.
10 Classification.
10.1 Classification problems.
10.2 Evaluation of classification models.
10.3 Classification trees.
10.4 Bayesian methods.
10.5 Logistic regression.
10.6 Neural networks.
10.7 Support vector machines.
10.8 Notes and readings.
11 Association rules.
11.1 Motivation and structure of association rules.
11.2 Single-dimension association rules.
11.3 Apriori algorithm.
11.4 General association rules.
11.5 Notes and readings.
12 Clustering.
12.1 Clustering methods.
12.2 Partition methods.
12.3 Hierarchical methods.
12.4 Evaluation of clustering models.
12.5 Notes and readings.
III Business intelligence applications.
13 Marketing models.
13.1 Relational marketing.
13.2 Salesforce management.
13.3 Business case studies.
13.4 Notes and readings.
14 Logistic and production models.
14.1 Supply chain optimization.
14.2 Optimization models for logistics planning.
14.3 Revenue management systems.
14.4 Business case studies.
14.5 Notes and readings.
15 Data envelopment analysis.
15.1 Efficiency measures.
15.2 Efficient frontier.
15.3 The CCR model.
15.4 Identification of good operating practices.
15.5 Other models.
15.6 Notes and readings.
Appendix A Software tools.
Appendix B Dataset repositories.
References.
Index.
I Components of the decision-making process.
1 Business intelligence.
1.1 Effective and timely decisions.
1.2 Data, information and knowledge.
1.3 The role of mathematical models.
1.4 Business intelligence architectures.
1.5 Ethics and business intelligence.
1.6 Notes and readings.
2 Decision support systems.
2.1 Definition of system.
2.2 Representation of the decision-making process.
2.3 Evolution of information systems.
2.4 Definition of decision support system.
2.5 Development of a decision support system.
2.6 Notes and readings.
3 Data warehousing.
3.1 Definition of data warehouse.
3.2 Data warehouse architecture.
3.2.1 ETL tools.
3.3 Cubes and multidimensional analysis.
3.4 Notes and readings.
II Mathematical models and methods.
4 Mathematical models for decision making.
4.1 Structure of mathematical models.
4.2 Development of a model.
4.3 Classes of models.
4.4 Notes and readings.
5 Data mining.
5.1 Definition of data mining.
5.2 Representation of input data.
5.3 Data mining process.
5.4 Analysis methodologies.
5.5 Notes and readings.
6 Data preparation.
6.1 Data validation.
6.2 Data transformation.
6.3 Data reduction.
7 Data exploration.
7.1 Univariate analysis.
7.2 Bivariate analysis.
7.3 Multivariate analysis.
7.4 Notes and readings.
8 Regression.
8.1 Structure of regression models.
8.2 Simple linear regression.
8.3 Multiple linear regression.
8.4 Validation of regression models.
8.5 Selection of predictive variables.
8.6 Notes and readings.
9 Time series.
9.1 Definition of time series.
9.2 Evaluating time series models.
9.3 Analysis of the components of time series.
9.4 Exponential smoothing models.
9.5 Autoregressive models.
9.6 Combination of predictive models.
9.7 The forecasting process.
9.8 Notes and readings.
10 Classification.
10.1 Classification problems.
10.2 Evaluation of classification models.
10.3 Classification trees.
10.4 Bayesian methods.
10.5 Logistic regression.
10.6 Neural networks.
10.7 Support vector machines.
10.8 Notes and readings.
11 Association rules.
11.1 Motivation and structure of association rules.
11.2 Single-dimension association rules.
11.3 Apriori algorithm.
11.4 General association rules.
11.5 Notes and readings.
12 Clustering.
12.1 Clustering methods.
12.2 Partition methods.
12.3 Hierarchical methods.
12.4 Evaluation of clustering models.
12.5 Notes and readings.
III Business intelligence applications.
13 Marketing models.
13.1 Relational marketing.
13.2 Salesforce management.
13.3 Business case studies.
13.4 Notes and readings.
14 Logistic and production models.
14.1 Supply chain optimization.
14.2 Optimization models for logistics planning.
14.3 Revenue management systems.
14.4 Business case studies.
14.5 Notes and readings.
15 Data envelopment analysis.
15.1 Efficiency measures.
15.2 Efficient frontier.
15.3 The CCR model.
15.4 Identification of good operating practices.
15.5 Other models.
15.6 Notes and readings.
Appendix A Software tools.
Appendix B Dataset repositories.
References.
Index.
主題書展
更多
主題書展
更多書展購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

